Spaces:
Runtime error
Runtime error
echen01
commited on
Commit
•
2e34814
1
Parent(s):
23744e2
add PTI
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- PTI/.gitignore +1 -0
- PTI/LICENSE +21 -0
- PTI/README.md +229 -0
- PTI/color_transfer_loss.py +60 -0
- PTI/configs/__init__.py +0 -0
- PTI/configs/evaluation_config.py +1 -0
- PTI/configs/global_config.py +12 -0
- PTI/configs/hyperparameters.py +31 -0
- PTI/configs/paths_config.py +41 -0
- PTI/criteria/__init__.py +0 -0
- PTI/criteria/backbones/__init__.py +25 -0
- PTI/criteria/backbones/iresnet.py +186 -0
- PTI/criteria/backbones/iresnet2060.py +176 -0
- PTI/criteria/backbones/mobilefacenet.py +130 -0
- PTI/criteria/deeplab.py +353 -0
- PTI/criteria/helpers.py +119 -0
- PTI/criteria/id_loss.py +64 -0
- PTI/criteria/l2_loss.py +14 -0
- PTI/criteria/localitly_regulizer.py +59 -0
- PTI/criteria/mask.py +123 -0
- PTI/criteria/model_irse.py +115 -0
- PTI/criteria/validation.py +0 -0
- PTI/dnnlib/__init__.py +9 -0
- PTI/dnnlib/util.py +477 -0
- PTI/models/StyleCLIP/__init__.py +0 -0
- PTI/models/StyleCLIP/criteria/__init__.py +0 -0
- PTI/models/StyleCLIP/criteria/clip_loss.py +17 -0
- PTI/models/StyleCLIP/criteria/id_loss.py +39 -0
- PTI/models/StyleCLIP/global_directions/GUI.py +103 -0
- PTI/models/StyleCLIP/global_directions/GenerateImg.py +50 -0
- PTI/models/StyleCLIP/global_directions/GetCode.py +232 -0
- PTI/models/StyleCLIP/global_directions/GetGUIData.py +67 -0
- PTI/models/StyleCLIP/global_directions/Inference.py +106 -0
- PTI/models/StyleCLIP/global_directions/MapTS.py +394 -0
- PTI/models/StyleCLIP/global_directions/PlayInteractively.py +197 -0
- PTI/models/StyleCLIP/global_directions/SingleChannel.py +109 -0
- PTI/models/StyleCLIP/global_directions/__init__.py +0 -0
- PTI/models/StyleCLIP/global_directions/data/ffhq/w_plus.npy +3 -0
- PTI/models/StyleCLIP/global_directions/dnnlib/__init__.py +9 -0
- PTI/models/StyleCLIP/global_directions/dnnlib/tflib/__init__.py +20 -0
- PTI/models/StyleCLIP/global_directions/dnnlib/tflib/autosummary.py +193 -0
- PTI/models/StyleCLIP/global_directions/dnnlib/tflib/custom_ops.py +181 -0
- PTI/models/StyleCLIP/global_directions/dnnlib/tflib/network.py +781 -0
- PTI/models/StyleCLIP/global_directions/dnnlib/tflib/ops/__init__.py +9 -0
- PTI/models/StyleCLIP/global_directions/dnnlib/tflib/ops/fused_bias_act.cu +220 -0
- PTI/models/StyleCLIP/global_directions/dnnlib/tflib/ops/fused_bias_act.py +211 -0
- PTI/models/StyleCLIP/global_directions/dnnlib/tflib/ops/upfirdn_2d.cu +359 -0
- PTI/models/StyleCLIP/global_directions/dnnlib/tflib/ops/upfirdn_2d.py +418 -0
- PTI/models/StyleCLIP/global_directions/dnnlib/tflib/optimizer.py +372 -0
- PTI/models/StyleCLIP/global_directions/dnnlib/tflib/tfutil.py +262 -0
PTI/.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
PTI/LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2021 Daniel Roich
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
PTI/README.md
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# PTI: Pivotal Tuning for Latent-based editing of Real Images
|
2 |
+
|
3 |
+
<!-- > Recently, a surge of advanced facial editing techniques have been proposed
|
4 |
+
that leverage the generative power of a pre-trained StyleGAN. To successfully
|
5 |
+
edit an image this way, one must first project (or invert) the image into
|
6 |
+
the pre-trained generator’s domain. As it turns out, however, StyleGAN’s
|
7 |
+
latent space induces an inherent tradeoff between distortion and editability,
|
8 |
+
i.e. between maintaining the original appearance and convincingly altering
|
9 |
+
some of its attributes. Practically, this means it is still challenging to
|
10 |
+
apply ID-preserving facial latent-space editing to faces which are out of the
|
11 |
+
generator’s domain. In this paper, we present an approach to bridge this
|
12 |
+
gap. Our technique slightly alters the generator, so that an out-of-domain
|
13 |
+
image is faithfully mapped into an in-domain latent code. The key idea is
|
14 |
+
pivotal tuning — a brief training process that preserves the editing quality
|
15 |
+
of an in-domain latent region, while changing its portrayed identity and
|
16 |
+
appearance. In Pivotal Tuning Inversion (PTI), an initial inverted latent code
|
17 |
+
serves as a pivot, around which the generator is fined-tuned. At the same
|
18 |
+
time, a regularization term keeps nearby identities intact, to locally contain
|
19 |
+
the effect. This surgical training process ends up altering appearance features
|
20 |
+
that represent mostly identity, without affecting editing capabilities.
|
21 |
+
To supplement this, we further show that pivotal tuning can also adjust the
|
22 |
+
generator to accommodate a multitude of faces, while introducing negligible
|
23 |
+
distortion on the rest of the domain. We validate our technique through
|
24 |
+
inversion and editing metrics, and show preferable scores to state-of-the-art
|
25 |
+
methods. We further qualitatively demonstrate our technique by applying
|
26 |
+
advanced edits (such as pose, age, or expression) to numerous images of
|
27 |
+
well-known and recognizable identities. Finally, we demonstrate resilience
|
28 |
+
to harder cases, including heavy make-up, elaborate hairstyles and/or headwear,
|
29 |
+
which otherwise could not have been successfully inverted and edited
|
30 |
+
by state-of-the-art methods. -->
|
31 |
+
|
32 |
+
<a href="https://arxiv.org/abs/2106.05744"><img src="https://img.shields.io/badge/arXiv-2008.00951-b31b1b.svg"></a>
|
33 |
+
<a href="https://opensource.org/licenses/MIT"><img src="https://img.shields.io/badge/License-MIT-yellow.svg"></a>
|
34 |
+
Inference Notebook: <a href="https://colab.research.google.com/github/danielroich/PTI/blob/main/notebooks/inference_playground.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" height=20></a>
|
35 |
+
|
36 |
+
<p align="center">
|
37 |
+
<img src="docs/teaser.jpg"/>
|
38 |
+
<br>
|
39 |
+
Pivotal Tuning Inversion (PTI) enables employing off-the-shelf latent based
|
40 |
+
semantic editing techniques on real images using StyleGAN.
|
41 |
+
PTI excels in identity preserving edits, portrayed through recognizable figures —
|
42 |
+
Serena Williams and Robert Downey Jr. (top), and in handling faces which
|
43 |
+
are clearly out-of-domain, e.g., due to heavy makeup (bottom).
|
44 |
+
</br>
|
45 |
+
</p>
|
46 |
+
|
47 |
+
## Description
|
48 |
+
Official Implementation of our PTI paper + code for evaluation metrics. PTI introduces an optimization mechanizem for solving the StyleGAN inversion task.
|
49 |
+
Providing near-perfect reconstruction results while maintaining the high editing abilitis of the native StyleGAN latent space W. For more details, see <a href="https://arxiv.org/abs/2106.05744"><img src="https://img.shields.io/badge/arXiv-2008.00951-b31b1b.svg"></a>
|
50 |
+
|
51 |
+
## Recent Updates
|
52 |
+
**2021.07.01**: Fixed files download phase in the inference notebook. Which might caused the notebook not to run smoothly.
|
53 |
+
|
54 |
+
**2021.06.29**: Added support for CPU. In order to run PTI on CPU please change `device` parameter under `configs/global_config.py` to "cpu" instead of "cuda".
|
55 |
+
|
56 |
+
**2021.06.25** : Adding mohawk edit using StyleCLIP+PTI in inference notebook.
|
57 |
+
Updating documentation in inference notebook due to Google Drive rate limit reached.
|
58 |
+
Currently, Google Drive does not allow to download the pretrined models using Colab automatically. Manual intervention might be needed.
|
59 |
+
|
60 |
+
## Getting Started
|
61 |
+
### Prerequisites
|
62 |
+
- Linux or macOS
|
63 |
+
- NVIDIA GPU + CUDA CuDNN (Not mandatory bur recommended)
|
64 |
+
- Python 3
|
65 |
+
|
66 |
+
### Installation
|
67 |
+
- Dependencies:
|
68 |
+
1. lpips
|
69 |
+
2. wandb
|
70 |
+
3. pytorch
|
71 |
+
4. torchvision
|
72 |
+
5. matplotlib
|
73 |
+
6. dlib
|
74 |
+
- All dependencies can be installed using *pip install* and the package name
|
75 |
+
|
76 |
+
## Pretrained Models
|
77 |
+
Please download the pretrained models from the following links.
|
78 |
+
|
79 |
+
### Auxiliary Models
|
80 |
+
We provide various auxiliary models needed for PTI inversion task.
|
81 |
+
This includes the StyleGAN generator and pre-trained models used for loss computation.
|
82 |
+
| Path | Description
|
83 |
+
| :--- | :----------
|
84 |
+
|[FFHQ StyleGAN](https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/ffhq.pkl) | StyleGAN2-ada model trained on FFHQ with 1024x1024 output resolution.
|
85 |
+
|[Dlib alignment](https://drive.google.com/file/d/1HKmjg6iXsWr4aFPuU0gBXPGR83wqMzq7/view?usp=sharing) | Dlib alignment used for images preproccessing.
|
86 |
+
|[FFHQ e4e encoder](https://drive.google.com/file/d/1ALC5CLA89Ouw40TwvxcwebhzWXM5YSCm/view?usp=sharing) | Pretrained e4e encoder. Used for StyleCLIP editing.
|
87 |
+
|
88 |
+
Note: The StyleGAN model is used directly from the official [stylegan2-ada-pytorch implementation](https://github.com/NVlabs/stylegan2-ada-pytorch).
|
89 |
+
For StyleCLIP pretrained mappers, please see [StyleCLIP's official routes](https://github.com/orpatashnik/StyleCLIP/blob/main/utils.py)
|
90 |
+
|
91 |
+
|
92 |
+
By default, we assume that all auxiliary models are downloaded and saved to the directory `pretrained_models`.
|
93 |
+
However, you may use your own paths by changing the necessary values in `configs/path_configs.py`.
|
94 |
+
|
95 |
+
|
96 |
+
## Inversion
|
97 |
+
### Preparing your Data
|
98 |
+
In order to invert a real image and edit it you should first align and crop it to the correct size. To do so you should perform *One* of the following steps:
|
99 |
+
1. Run `notebooks/align_data.ipynb` and change the "images_path" variable to the raw images path
|
100 |
+
2. Run `utils/align_data.py` and change the "images_path" variable to the raw images path
|
101 |
+
|
102 |
+
|
103 |
+
### Weights And Biases
|
104 |
+
The project supports [Weights And Biases](https://wandb.ai/home) framework for experiment tracking. For the inversion task it enables visualization of the losses progression and the generator intermediate results during the initial inversion and the *Pivotal Tuning*(PT) procedure.
|
105 |
+
|
106 |
+
The log frequency can be adjusted using the parameters defined at `configs/global_config.py` under the "Logs" subsection.
|
107 |
+
|
108 |
+
There is no no need to have an account. However, in order to use the features provided by Weights and Biases you first have to register on their site.
|
109 |
+
|
110 |
+
|
111 |
+
### Running PTI
|
112 |
+
The main training script is `scripts/run_pti.py`. The script receives aligned and cropped images from paths configured in the "Input info" subscetion in
|
113 |
+
`configs/paths_config.py`.
|
114 |
+
Results are saved to directories found at "Dirs for output files" under `configs/paths_config.py`. This includes inversion latent codes and tuned generators.
|
115 |
+
The hyperparametrs for the inversion task can be found at `configs/hyperparameters.py`. They are intilized to the default values used in the paper.
|
116 |
+
|
117 |
+
## Editing
|
118 |
+
By default, we assume that all auxiliary edit directions are downloaded and saved to the directory `editings`.
|
119 |
+
However, you may use your own paths by changing the necessary values in `configs/path_configs.py` under "Edit directions" subsection.
|
120 |
+
|
121 |
+
Example of editing code can be found at `scripts/latent_editor_wrapper.py`
|
122 |
+
|
123 |
+
## Inference Notebooks
|
124 |
+
To help visualize the results of PTI we provide a Jupyter notebook found in `notebooks/inference_playground.ipynb`.
|
125 |
+
The notebook will download the pretrained models and run inference on a sample image found online or
|
126 |
+
on images of your choosing. It is recommended to run this in [Google Colab](https://colab.research.google.com/github/danielroich/PTI/blob/main/notebooks/inference_playground.ipynb).
|
127 |
+
|
128 |
+
The notebook demonstrates how to:
|
129 |
+
- Invert an image using PTI
|
130 |
+
- Visualise the inversion and use the PTI output
|
131 |
+
- Edit the image after PTI using InterfaceGAN and StyleCLIP
|
132 |
+
- Compare to other inversion methods
|
133 |
+
|
134 |
+
## Evaluation
|
135 |
+
Currently the repository supports qualitative evaluation for reconstruction of: PTI, SG2 (*W Space*), e4e, SG2Plus (*W+ Space*).
|
136 |
+
As well as editing using InterfaceGAN and GANSpace for the same inversion methods.
|
137 |
+
To run the evaluation please see `evaluation/qualitative_edit_comparison.py`. Examples of the evaluation scripts are:
|
138 |
+
|
139 |
+
<p align="center">
|
140 |
+
<img src="docs/model_rec.jpg"/>
|
141 |
+
<br>
|
142 |
+
Reconsturction comparison between different methods. The images order is: Original image, W+ inversion, e4e inversion, W inversion, PTI inversion
|
143 |
+
</br>
|
144 |
+
</p>
|
145 |
+
|
146 |
+
<p align="center">
|
147 |
+
<img src="docs/stern_rotation.jpg"/>
|
148 |
+
<br>
|
149 |
+
InterfaceGAN pose edit comparison between different methods. The images order is: Original, W+, e4e, W, PTI
|
150 |
+
</br>
|
151 |
+
</p>
|
152 |
+
|
153 |
+
<p align="center">
|
154 |
+
<img src="docs/tyron_original.jpg" width="220" height="220"/>
|
155 |
+
<img src="docs/tyron_edit.jpg" width="220" height="220"/>
|
156 |
+
<br>
|
157 |
+
Image per edit or several edits without comparison
|
158 |
+
</br>
|
159 |
+
</p>
|
160 |
+
|
161 |
+
### Coming Soon - Quantitative evaluation and StyleCLIP qualitative evaluation
|
162 |
+
|
163 |
+
## Repository structure
|
164 |
+
| Path | Description <img width=200>
|
165 |
+
| :--- | :---
|
166 |
+
| ├ configs | Folder containing configs defining Hyperparameters, paths and logging
|
167 |
+
| ├ criteria | Folder containing various loss and regularization criterias for the optimization
|
168 |
+
| ├ dnnlib | Folder containing internal utils for StyleGAN2-ada
|
169 |
+
| ├ docs | Folder containing the latent space edit directions
|
170 |
+
| ├ editings | Folder containing images displayed in the README
|
171 |
+
| ├ environment | Folder containing Anaconda environment used in our experiments
|
172 |
+
| ├ licenses | Folder containing licenses of the open source projects used in this repository
|
173 |
+
| ├ models | Folder containing models used in different editing techniques and first phase inversion
|
174 |
+
| ├ notebooks | Folder with jupyter notebooks to demonstrate the usage of PTI end-to-end
|
175 |
+
| ├ scripts | Folder with running scripts for inversion, editing and metric computations
|
176 |
+
| ├ torch_utils | Folder containing internal utils for StyleGAN2-ada
|
177 |
+
| ├ training | Folder containing the core training logic of PTI
|
178 |
+
| ├ utils | Folder with various utility functions
|
179 |
+
|
180 |
+
|
181 |
+
## Credits
|
182 |
+
**StyleGAN2-ada model and implementation:**
|
183 |
+
https://github.com/NVlabs/stylegan2-ada-pytorch
|
184 |
+
Copyright © 2021, NVIDIA Corporation.
|
185 |
+
Nvidia Source Code License https://nvlabs.github.io/stylegan2-ada-pytorch/license.html
|
186 |
+
|
187 |
+
**LPIPS model and implementation:**
|
188 |
+
https://github.com/richzhang/PerceptualSimilarity
|
189 |
+
Copyright (c) 2020, Sou Uchida
|
190 |
+
License (BSD 2-Clause) https://github.com/richzhang/PerceptualSimilarity/blob/master/LICENSE
|
191 |
+
|
192 |
+
**e4e model and implementation:**
|
193 |
+
https://github.com/omertov/encoder4editing
|
194 |
+
Copyright (c) 2021 omertov
|
195 |
+
License (MIT) https://github.com/omertov/encoder4editing/blob/main/LICENSE
|
196 |
+
|
197 |
+
**StyleCLIP model and implementation:**
|
198 |
+
https://github.com/orpatashnik/StyleCLIP
|
199 |
+
Copyright (c) 2021 orpatashnik
|
200 |
+
License (MIT) https://github.com/orpatashnik/StyleCLIP/blob/main/LICENSE
|
201 |
+
|
202 |
+
**InterfaceGAN implementation:**
|
203 |
+
https://github.com/genforce/interfacegan
|
204 |
+
Copyright (c) 2020 genforce
|
205 |
+
License (MIT) https://github.com/genforce/interfacegan/blob/master/LICENSE
|
206 |
+
|
207 |
+
**GANSpace implementation:**
|
208 |
+
https://github.com/harskish/ganspace
|
209 |
+
Copyright (c) 2020 harkish
|
210 |
+
License (Apache License 2.0) https://github.com/harskish/ganspace/blob/master/LICENSE
|
211 |
+
|
212 |
+
|
213 |
+
## Acknowledgments
|
214 |
+
This repository structure is based on [encoder4editing](https://github.com/omertov/encoder4editing) and [ReStyle](https://github.com/yuval-alaluf/restyle-encoder) repositories
|
215 |
+
|
216 |
+
## Contact
|
217 |
+
For any inquiry please contact us at our email addresses: [email protected] or [email protected]
|
218 |
+
|
219 |
+
|
220 |
+
## Citation
|
221 |
+
If you use this code for your research, please cite:
|
222 |
+
```
|
223 |
+
@article{roich2021pivotal,
|
224 |
+
title={Pivotal Tuning for Latent-based Editing of Real Images},
|
225 |
+
author={Roich, Daniel and Mokady, Ron and Bermano, Amit H and Cohen-Or, Daniel},
|
226 |
+
journal={arXiv preprint arXiv:2106.05744},
|
227 |
+
year={2021}
|
228 |
+
}
|
229 |
+
```
|
PTI/color_transfer_loss.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn.functional import (
|
6 |
+
smooth_l1_loss,
|
7 |
+
)
|
8 |
+
|
9 |
+
|
10 |
+
def flatten_CHW(im: torch.Tensor) -> torch.Tensor:
|
11 |
+
"""
|
12 |
+
(B, C, H, W) -> (B, -1)
|
13 |
+
"""
|
14 |
+
B = im.shape[0]
|
15 |
+
return im.reshape(B, -1)
|
16 |
+
|
17 |
+
|
18 |
+
def stddev(x: torch.Tensor) -> torch.Tensor:
|
19 |
+
"""
|
20 |
+
x: (B, -1), assume with mean normalized
|
21 |
+
Retuens:
|
22 |
+
stddev: (B)
|
23 |
+
"""
|
24 |
+
return torch.sqrt(torch.mean(x * x, dim=-1))
|
25 |
+
|
26 |
+
|
27 |
+
def gram_matrix(input_):
|
28 |
+
B, C = input_.shape[:2]
|
29 |
+
features = input_.view(B, C, -1)
|
30 |
+
N = features.shape[-1]
|
31 |
+
G = torch.bmm(features, features.transpose(1, 2)) # C x C
|
32 |
+
return G.div(C * N)
|
33 |
+
|
34 |
+
|
35 |
+
class ColorTransferLoss(nn.Module):
|
36 |
+
"""Penalize the gram matrix difference between StyleGAN2's ToRGB outputs"""
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
init_rgbs,
|
40 |
+
scale_rgb: bool = False
|
41 |
+
):
|
42 |
+
super().__init__()
|
43 |
+
|
44 |
+
with torch.no_grad():
|
45 |
+
init_feats = [x.detach() for x in init_rgbs]
|
46 |
+
self.stds = [stddev(flatten_CHW(rgb)) if scale_rgb else 1 for rgb in init_feats] # (B, 1, 1, 1) or scalar
|
47 |
+
self.grams = [gram_matrix(rgb / std) for rgb, std in zip(init_feats, self.stds)]
|
48 |
+
|
49 |
+
def forward(self, rgbs: List[torch.Tensor], level: int = None):
|
50 |
+
if level is None:
|
51 |
+
level = len(self.grams)
|
52 |
+
|
53 |
+
feats = rgbs
|
54 |
+
loss = 0
|
55 |
+
for i, (rgb, std) in enumerate(zip(feats[:level], self.stds[:level])):
|
56 |
+
G = gram_matrix(rgb / std)
|
57 |
+
loss = loss + smooth_l1_loss(G, self.grams[i])
|
58 |
+
|
59 |
+
return loss
|
60 |
+
|
PTI/configs/__init__.py
ADDED
File without changes
|
PTI/configs/evaluation_config.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
evaluated_methods = ['e4e', 'SG2', 'SG2Plus']
|
PTI/configs/global_config.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Device
|
2 |
+
cuda_visible_devices = "1"
|
3 |
+
device = "cuda:0"
|
4 |
+
|
5 |
+
## Logs
|
6 |
+
training_step = 1
|
7 |
+
image_rec_result_log_snapshot = 100
|
8 |
+
pivotal_training_steps = 0
|
9 |
+
model_snapshot_interval = 400
|
10 |
+
|
11 |
+
## Run name to be updated during PTI
|
12 |
+
run_name = ""
|
PTI/configs/hyperparameters.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Architechture
|
2 |
+
lpips_type = "alex"
|
3 |
+
first_inv_type = "w"
|
4 |
+
optim_type = "adam"
|
5 |
+
|
6 |
+
## Locality regularization
|
7 |
+
latent_ball_num_of_samples = 1
|
8 |
+
locality_regularization_interval = 1
|
9 |
+
use_locality_regularization = False
|
10 |
+
regulizer_l2_lambda = 0.1
|
11 |
+
regulizer_lpips_lambda = 0.1
|
12 |
+
regulizer_alpha = 30
|
13 |
+
|
14 |
+
## Loss
|
15 |
+
use_mask = True
|
16 |
+
pt_l2_lambda = 0.7
|
17 |
+
pt_lpips_lambda = 1
|
18 |
+
color_transfer_lambda = 0 # 1e6
|
19 |
+
id_lambda = 1
|
20 |
+
|
21 |
+
## Steps
|
22 |
+
LPIPS_value_threshold = 0.01 # 0.06
|
23 |
+
max_pti_steps = 350
|
24 |
+
first_inv_steps = 450
|
25 |
+
max_images_to_invert = 10
|
26 |
+
|
27 |
+
## Optimization
|
28 |
+
pti_learning_rate = 3e-4
|
29 |
+
first_inv_lr = 5e-3
|
30 |
+
train_batch_size = 1
|
31 |
+
use_last_w_pivots = True
|
PTI/configs/paths_config.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
year = "2010"
|
2 |
+
|
3 |
+
## Pretrained models paths
|
4 |
+
e4e = "./pretrained_models/e4e_ffhq_encode.pt"
|
5 |
+
|
6 |
+
|
7 |
+
stylegan2_ada_ffhq = f"../pretrained_models/{year}.pkl"
|
8 |
+
|
9 |
+
style_clip_pretrained_mappers = ""
|
10 |
+
ir_se50 = "/share/phoenix/nfs04/S7/wikitime_models/model_ir_se50.pth"
|
11 |
+
dlib = "./pretrained_models/align.dat"
|
12 |
+
deeplab = "/share/phoenix/nfs04/S7/wikitime_models/deeplab_model/deeplab_model.pth"
|
13 |
+
|
14 |
+
## Dirs for output files
|
15 |
+
checkpoints_dir = "./checkpoints"
|
16 |
+
embedding_base_dir = "./embeddings"
|
17 |
+
styleclip_output_dir = "./StyleCLIP_results"
|
18 |
+
experiments_output_dir = "./output"
|
19 |
+
|
20 |
+
## Input info
|
21 |
+
### Input dir, where the images reside
|
22 |
+
input_data_path = (
|
23 |
+
f"/share/phoenix/nfs04/S7/emc348/WikiFaces/datasets/new_crops/test/{year}"
|
24 |
+
)
|
25 |
+
input_data_id = f"{year}"
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
## Keywords
|
31 |
+
pti_results_keyword = "PTI"
|
32 |
+
e4e_results_keyword = "e4e"
|
33 |
+
sg2_results_keyword = "SG2"
|
34 |
+
sg2_plus_results_keyword = "SG2_plus"
|
35 |
+
multi_id_model_type = "multi_id_fine"
|
36 |
+
|
37 |
+
## Edit directions
|
38 |
+
interfacegan_age = "editings/interfacegan_directions/age.pt"
|
39 |
+
interfacegan_smile = "editings/interfacegan_directions/smile.pt"
|
40 |
+
interfacegan_rotation = "editings/interfacegan_directions/rotation.pt"
|
41 |
+
ffhq_pca = "editings/ganspace_pca/ffhq_pca.pt"
|
PTI/criteria/__init__.py
ADDED
File without changes
|
PTI/criteria/backbones/__init__.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .iresnet import iresnet18, iresnet34, iresnet50, iresnet100, iresnet200
|
2 |
+
from .mobilefacenet import get_mbf
|
3 |
+
|
4 |
+
|
5 |
+
def get_model(name, **kwargs):
|
6 |
+
# resnet
|
7 |
+
if name == "r18":
|
8 |
+
return iresnet18(False, **kwargs)
|
9 |
+
elif name == "r34":
|
10 |
+
return iresnet34(False, **kwargs)
|
11 |
+
elif name == "r50":
|
12 |
+
return iresnet50(False, **kwargs)
|
13 |
+
elif name == "r100":
|
14 |
+
return iresnet100(False, **kwargs)
|
15 |
+
elif name == "r200":
|
16 |
+
return iresnet200(False, **kwargs)
|
17 |
+
elif name == "r2060":
|
18 |
+
from .iresnet2060 import iresnet2060
|
19 |
+
return iresnet2060(False, **kwargs)
|
20 |
+
elif name == "mbf":
|
21 |
+
fp16 = kwargs.get("fp16", False)
|
22 |
+
num_features = kwargs.get("num_features", 512)
|
23 |
+
return get_mbf(fp16=fp16, num_features=num_features)
|
24 |
+
else:
|
25 |
+
raise ValueError()
|
PTI/criteria/backbones/iresnet.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
__all__ = ['iresnet18', 'iresnet34', 'iresnet50', 'iresnet100', 'iresnet200']
|
5 |
+
|
6 |
+
|
7 |
+
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
|
8 |
+
"""3x3 convolution with padding"""
|
9 |
+
return nn.Conv2d(in_planes,
|
10 |
+
out_planes,
|
11 |
+
kernel_size=3,
|
12 |
+
stride=stride,
|
13 |
+
padding=dilation,
|
14 |
+
groups=groups,
|
15 |
+
bias=False,
|
16 |
+
dilation=dilation)
|
17 |
+
|
18 |
+
|
19 |
+
def conv1x1(in_planes, out_planes, stride=1):
|
20 |
+
"""1x1 convolution"""
|
21 |
+
return nn.Conv2d(in_planes,
|
22 |
+
out_planes,
|
23 |
+
kernel_size=1,
|
24 |
+
stride=stride,
|
25 |
+
bias=False)
|
26 |
+
|
27 |
+
|
28 |
+
class IBasicBlock(nn.Module):
|
29 |
+
expansion = 1
|
30 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None,
|
31 |
+
groups=1, base_width=64, dilation=1):
|
32 |
+
super(IBasicBlock, self).__init__()
|
33 |
+
if groups != 1 or base_width != 64:
|
34 |
+
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
|
35 |
+
if dilation > 1:
|
36 |
+
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
|
37 |
+
self.bn1 = nn.BatchNorm2d(inplanes, eps=1e-05,)
|
38 |
+
self.conv1 = conv3x3(inplanes, planes)
|
39 |
+
self.bn2 = nn.BatchNorm2d(planes, eps=1e-05,)
|
40 |
+
self.prelu = nn.PReLU(planes)
|
41 |
+
self.conv2 = conv3x3(planes, planes, stride)
|
42 |
+
self.bn3 = nn.BatchNorm2d(planes, eps=1e-05,)
|
43 |
+
self.downsample = downsample
|
44 |
+
self.stride = stride
|
45 |
+
|
46 |
+
def forward(self, x):
|
47 |
+
identity = x
|
48 |
+
out = self.bn1(x)
|
49 |
+
out = self.conv1(out)
|
50 |
+
out = self.bn2(out)
|
51 |
+
out = self.prelu(out)
|
52 |
+
out = self.conv2(out)
|
53 |
+
out = self.bn3(out)
|
54 |
+
if self.downsample is not None:
|
55 |
+
identity = self.downsample(x)
|
56 |
+
out += identity
|
57 |
+
return out
|
58 |
+
|
59 |
+
|
60 |
+
class IResNet(nn.Module):
|
61 |
+
fc_scale = 7 * 7
|
62 |
+
def __init__(self,
|
63 |
+
block, layers, dropout=0, num_features=512, zero_init_residual=False,
|
64 |
+
groups=1, width_per_group=64, replace_stride_with_dilation=None, fp16=False):
|
65 |
+
super(IResNet, self).__init__()
|
66 |
+
self.fp16 = fp16
|
67 |
+
self.inplanes = 64
|
68 |
+
self.dilation = 1
|
69 |
+
if replace_stride_with_dilation is None:
|
70 |
+
replace_stride_with_dilation = [False, False, False]
|
71 |
+
if len(replace_stride_with_dilation) != 3:
|
72 |
+
raise ValueError("replace_stride_with_dilation should be None "
|
73 |
+
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))
|
74 |
+
self.groups = groups
|
75 |
+
self.base_width = width_per_group
|
76 |
+
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False)
|
77 |
+
self.bn1 = nn.BatchNorm2d(self.inplanes, eps=1e-05)
|
78 |
+
self.prelu = nn.PReLU(self.inplanes)
|
79 |
+
self.layer1 = self._make_layer(block, 64, layers[0], stride=2)
|
80 |
+
self.layer2 = self._make_layer(block,
|
81 |
+
128,
|
82 |
+
layers[1],
|
83 |
+
stride=2,
|
84 |
+
dilate=replace_stride_with_dilation[0])
|
85 |
+
self.layer3 = self._make_layer(block,
|
86 |
+
256,
|
87 |
+
layers[2],
|
88 |
+
stride=2,
|
89 |
+
dilate=replace_stride_with_dilation[1])
|
90 |
+
self.layer4 = self._make_layer(block,
|
91 |
+
512,
|
92 |
+
layers[3],
|
93 |
+
stride=2,
|
94 |
+
dilate=replace_stride_with_dilation[2])
|
95 |
+
self.bn2 = nn.BatchNorm2d(512 * block.expansion, eps=1e-05,)
|
96 |
+
self.dropout = nn.Dropout(p=dropout, inplace=True)
|
97 |
+
self.fc = nn.Linear(512 * block.expansion * self.fc_scale, num_features)
|
98 |
+
self.features = nn.BatchNorm1d(num_features, eps=1e-05)
|
99 |
+
nn.init.constant_(self.features.weight, 1.0)
|
100 |
+
self.features.weight.requires_grad = False
|
101 |
+
|
102 |
+
for m in self.modules():
|
103 |
+
if isinstance(m, nn.Conv2d):
|
104 |
+
nn.init.normal_(m.weight, 0, 0.1)
|
105 |
+
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
|
106 |
+
nn.init.constant_(m.weight, 1)
|
107 |
+
nn.init.constant_(m.bias, 0)
|
108 |
+
|
109 |
+
if zero_init_residual:
|
110 |
+
for m in self.modules():
|
111 |
+
if isinstance(m, IBasicBlock):
|
112 |
+
nn.init.constant_(m.bn2.weight, 0)
|
113 |
+
|
114 |
+
def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
|
115 |
+
downsample = None
|
116 |
+
previous_dilation = self.dilation
|
117 |
+
if dilate:
|
118 |
+
self.dilation *= stride
|
119 |
+
stride = 1
|
120 |
+
if stride != 1 or self.inplanes != planes * block.expansion:
|
121 |
+
downsample = nn.Sequential(
|
122 |
+
conv1x1(self.inplanes, planes * block.expansion, stride),
|
123 |
+
nn.BatchNorm2d(planes * block.expansion, eps=1e-05, ),
|
124 |
+
)
|
125 |
+
layers = []
|
126 |
+
layers.append(
|
127 |
+
block(self.inplanes, planes, stride, downsample, self.groups,
|
128 |
+
self.base_width, previous_dilation))
|
129 |
+
self.inplanes = planes * block.expansion
|
130 |
+
for _ in range(1, blocks):
|
131 |
+
layers.append(
|
132 |
+
block(self.inplanes,
|
133 |
+
planes,
|
134 |
+
groups=self.groups,
|
135 |
+
base_width=self.base_width,
|
136 |
+
dilation=self.dilation))
|
137 |
+
|
138 |
+
return nn.Sequential(*layers)
|
139 |
+
|
140 |
+
def forward(self, x):
|
141 |
+
with torch.cuda.amp.autocast(self.fp16):
|
142 |
+
x = self.conv1(x)
|
143 |
+
x = self.bn1(x)
|
144 |
+
x = self.prelu(x)
|
145 |
+
x = self.layer1(x)
|
146 |
+
x = self.layer2(x)
|
147 |
+
x = self.layer3(x)
|
148 |
+
x = self.layer4(x)
|
149 |
+
x = self.bn2(x)
|
150 |
+
x = torch.flatten(x, 1)
|
151 |
+
x = self.dropout(x)
|
152 |
+
x = self.fc(x.float() if self.fp16 else x)
|
153 |
+
x = self.features(x)
|
154 |
+
return x
|
155 |
+
|
156 |
+
|
157 |
+
def _iresnet(arch, block, layers, pretrained, progress, **kwargs):
|
158 |
+
model = IResNet(block, layers, **kwargs)
|
159 |
+
if pretrained:
|
160 |
+
raise ValueError()
|
161 |
+
return model
|
162 |
+
|
163 |
+
|
164 |
+
def iresnet18(pretrained=False, progress=True, **kwargs):
|
165 |
+
return _iresnet('iresnet18', IBasicBlock, [2, 2, 2, 2], pretrained,
|
166 |
+
progress, **kwargs)
|
167 |
+
|
168 |
+
|
169 |
+
def iresnet34(pretrained=False, progress=True, **kwargs):
|
170 |
+
return _iresnet('iresnet34', IBasicBlock, [3, 4, 6, 3], pretrained,
|
171 |
+
progress, **kwargs)
|
172 |
+
|
173 |
+
|
174 |
+
def iresnet50(pretrained=False, progress=True, **kwargs):
|
175 |
+
return _iresnet('iresnet50', IBasicBlock, [3, 4, 14, 3], pretrained,
|
176 |
+
progress, **kwargs)
|
177 |
+
|
178 |
+
|
179 |
+
def iresnet100(pretrained=False, progress=True, **kwargs):
|
180 |
+
return _iresnet('iresnet100', IBasicBlock, [3, 13, 30, 3], pretrained,
|
181 |
+
progress, **kwargs)
|
182 |
+
|
183 |
+
|
184 |
+
def iresnet200(pretrained=False, progress=True, **kwargs):
|
185 |
+
return _iresnet('iresnet200', IBasicBlock, [6, 26, 60, 6], pretrained,
|
186 |
+
progress, **kwargs)
|
PTI/criteria/backbones/iresnet2060.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
assert torch.__version__ >= "1.8.1"
|
5 |
+
from torch.utils.checkpoint import checkpoint_sequential
|
6 |
+
|
7 |
+
__all__ = ['iresnet2060']
|
8 |
+
|
9 |
+
|
10 |
+
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
|
11 |
+
"""3x3 convolution with padding"""
|
12 |
+
return nn.Conv2d(in_planes,
|
13 |
+
out_planes,
|
14 |
+
kernel_size=3,
|
15 |
+
stride=stride,
|
16 |
+
padding=dilation,
|
17 |
+
groups=groups,
|
18 |
+
bias=False,
|
19 |
+
dilation=dilation)
|
20 |
+
|
21 |
+
|
22 |
+
def conv1x1(in_planes, out_planes, stride=1):
|
23 |
+
"""1x1 convolution"""
|
24 |
+
return nn.Conv2d(in_planes,
|
25 |
+
out_planes,
|
26 |
+
kernel_size=1,
|
27 |
+
stride=stride,
|
28 |
+
bias=False)
|
29 |
+
|
30 |
+
|
31 |
+
class IBasicBlock(nn.Module):
|
32 |
+
expansion = 1
|
33 |
+
|
34 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None,
|
35 |
+
groups=1, base_width=64, dilation=1):
|
36 |
+
super(IBasicBlock, self).__init__()
|
37 |
+
if groups != 1 or base_width != 64:
|
38 |
+
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
|
39 |
+
if dilation > 1:
|
40 |
+
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
|
41 |
+
self.bn1 = nn.BatchNorm2d(inplanes, eps=1e-05, )
|
42 |
+
self.conv1 = conv3x3(inplanes, planes)
|
43 |
+
self.bn2 = nn.BatchNorm2d(planes, eps=1e-05, )
|
44 |
+
self.prelu = nn.PReLU(planes)
|
45 |
+
self.conv2 = conv3x3(planes, planes, stride)
|
46 |
+
self.bn3 = nn.BatchNorm2d(planes, eps=1e-05, )
|
47 |
+
self.downsample = downsample
|
48 |
+
self.stride = stride
|
49 |
+
|
50 |
+
def forward(self, x):
|
51 |
+
identity = x
|
52 |
+
out = self.bn1(x)
|
53 |
+
out = self.conv1(out)
|
54 |
+
out = self.bn2(out)
|
55 |
+
out = self.prelu(out)
|
56 |
+
out = self.conv2(out)
|
57 |
+
out = self.bn3(out)
|
58 |
+
if self.downsample is not None:
|
59 |
+
identity = self.downsample(x)
|
60 |
+
out += identity
|
61 |
+
return out
|
62 |
+
|
63 |
+
|
64 |
+
class IResNet(nn.Module):
|
65 |
+
fc_scale = 7 * 7
|
66 |
+
|
67 |
+
def __init__(self,
|
68 |
+
block, layers, dropout=0, num_features=512, zero_init_residual=False,
|
69 |
+
groups=1, width_per_group=64, replace_stride_with_dilation=None, fp16=False):
|
70 |
+
super(IResNet, self).__init__()
|
71 |
+
self.fp16 = fp16
|
72 |
+
self.inplanes = 64
|
73 |
+
self.dilation = 1
|
74 |
+
if replace_stride_with_dilation is None:
|
75 |
+
replace_stride_with_dilation = [False, False, False]
|
76 |
+
if len(replace_stride_with_dilation) != 3:
|
77 |
+
raise ValueError("replace_stride_with_dilation should be None "
|
78 |
+
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))
|
79 |
+
self.groups = groups
|
80 |
+
self.base_width = width_per_group
|
81 |
+
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False)
|
82 |
+
self.bn1 = nn.BatchNorm2d(self.inplanes, eps=1e-05)
|
83 |
+
self.prelu = nn.PReLU(self.inplanes)
|
84 |
+
self.layer1 = self._make_layer(block, 64, layers[0], stride=2)
|
85 |
+
self.layer2 = self._make_layer(block,
|
86 |
+
128,
|
87 |
+
layers[1],
|
88 |
+
stride=2,
|
89 |
+
dilate=replace_stride_with_dilation[0])
|
90 |
+
self.layer3 = self._make_layer(block,
|
91 |
+
256,
|
92 |
+
layers[2],
|
93 |
+
stride=2,
|
94 |
+
dilate=replace_stride_with_dilation[1])
|
95 |
+
self.layer4 = self._make_layer(block,
|
96 |
+
512,
|
97 |
+
layers[3],
|
98 |
+
stride=2,
|
99 |
+
dilate=replace_stride_with_dilation[2])
|
100 |
+
self.bn2 = nn.BatchNorm2d(512 * block.expansion, eps=1e-05, )
|
101 |
+
self.dropout = nn.Dropout(p=dropout, inplace=True)
|
102 |
+
self.fc = nn.Linear(512 * block.expansion * self.fc_scale, num_features)
|
103 |
+
self.features = nn.BatchNorm1d(num_features, eps=1e-05)
|
104 |
+
nn.init.constant_(self.features.weight, 1.0)
|
105 |
+
self.features.weight.requires_grad = False
|
106 |
+
|
107 |
+
for m in self.modules():
|
108 |
+
if isinstance(m, nn.Conv2d):
|
109 |
+
nn.init.normal_(m.weight, 0, 0.1)
|
110 |
+
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
|
111 |
+
nn.init.constant_(m.weight, 1)
|
112 |
+
nn.init.constant_(m.bias, 0)
|
113 |
+
|
114 |
+
if zero_init_residual:
|
115 |
+
for m in self.modules():
|
116 |
+
if isinstance(m, IBasicBlock):
|
117 |
+
nn.init.constant_(m.bn2.weight, 0)
|
118 |
+
|
119 |
+
def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
|
120 |
+
downsample = None
|
121 |
+
previous_dilation = self.dilation
|
122 |
+
if dilate:
|
123 |
+
self.dilation *= stride
|
124 |
+
stride = 1
|
125 |
+
if stride != 1 or self.inplanes != planes * block.expansion:
|
126 |
+
downsample = nn.Sequential(
|
127 |
+
conv1x1(self.inplanes, planes * block.expansion, stride),
|
128 |
+
nn.BatchNorm2d(planes * block.expansion, eps=1e-05, ),
|
129 |
+
)
|
130 |
+
layers = []
|
131 |
+
layers.append(
|
132 |
+
block(self.inplanes, planes, stride, downsample, self.groups,
|
133 |
+
self.base_width, previous_dilation))
|
134 |
+
self.inplanes = planes * block.expansion
|
135 |
+
for _ in range(1, blocks):
|
136 |
+
layers.append(
|
137 |
+
block(self.inplanes,
|
138 |
+
planes,
|
139 |
+
groups=self.groups,
|
140 |
+
base_width=self.base_width,
|
141 |
+
dilation=self.dilation))
|
142 |
+
|
143 |
+
return nn.Sequential(*layers)
|
144 |
+
|
145 |
+
def checkpoint(self, func, num_seg, x):
|
146 |
+
if self.training:
|
147 |
+
return checkpoint_sequential(func, num_seg, x)
|
148 |
+
else:
|
149 |
+
return func(x)
|
150 |
+
|
151 |
+
def forward(self, x):
|
152 |
+
with torch.cuda.amp.autocast(self.fp16):
|
153 |
+
x = self.conv1(x)
|
154 |
+
x = self.bn1(x)
|
155 |
+
x = self.prelu(x)
|
156 |
+
x = self.layer1(x)
|
157 |
+
x = self.checkpoint(self.layer2, 20, x)
|
158 |
+
x = self.checkpoint(self.layer3, 100, x)
|
159 |
+
x = self.layer4(x)
|
160 |
+
x = self.bn2(x)
|
161 |
+
x = torch.flatten(x, 1)
|
162 |
+
x = self.dropout(x)
|
163 |
+
x = self.fc(x.float() if self.fp16 else x)
|
164 |
+
x = self.features(x)
|
165 |
+
return x
|
166 |
+
|
167 |
+
|
168 |
+
def _iresnet(arch, block, layers, pretrained, progress, **kwargs):
|
169 |
+
model = IResNet(block, layers, **kwargs)
|
170 |
+
if pretrained:
|
171 |
+
raise ValueError()
|
172 |
+
return model
|
173 |
+
|
174 |
+
|
175 |
+
def iresnet2060(pretrained=False, progress=True, **kwargs):
|
176 |
+
return _iresnet('iresnet2060', IBasicBlock, [3, 128, 1024 - 128, 3], pretrained, progress, **kwargs)
|
PTI/criteria/backbones/mobilefacenet.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
Adapted from https://github.com/cavalleria/cavaface.pytorch/blob/master/backbone/mobilefacenet.py
|
3 |
+
Original author cavalleria
|
4 |
+
'''
|
5 |
+
|
6 |
+
import torch.nn as nn
|
7 |
+
from torch.nn import Linear, Conv2d, BatchNorm1d, BatchNorm2d, PReLU, Sequential, Module
|
8 |
+
import torch
|
9 |
+
|
10 |
+
|
11 |
+
class Flatten(Module):
|
12 |
+
def forward(self, x):
|
13 |
+
return x.view(x.size(0), -1)
|
14 |
+
|
15 |
+
|
16 |
+
class ConvBlock(Module):
|
17 |
+
def __init__(self, in_c, out_c, kernel=(1, 1), stride=(1, 1), padding=(0, 0), groups=1):
|
18 |
+
super(ConvBlock, self).__init__()
|
19 |
+
self.layers = nn.Sequential(
|
20 |
+
Conv2d(in_c, out_c, kernel, groups=groups, stride=stride, padding=padding, bias=False),
|
21 |
+
BatchNorm2d(num_features=out_c),
|
22 |
+
PReLU(num_parameters=out_c)
|
23 |
+
)
|
24 |
+
|
25 |
+
def forward(self, x):
|
26 |
+
return self.layers(x)
|
27 |
+
|
28 |
+
|
29 |
+
class LinearBlock(Module):
|
30 |
+
def __init__(self, in_c, out_c, kernel=(1, 1), stride=(1, 1), padding=(0, 0), groups=1):
|
31 |
+
super(LinearBlock, self).__init__()
|
32 |
+
self.layers = nn.Sequential(
|
33 |
+
Conv2d(in_c, out_c, kernel, stride, padding, groups=groups, bias=False),
|
34 |
+
BatchNorm2d(num_features=out_c)
|
35 |
+
)
|
36 |
+
|
37 |
+
def forward(self, x):
|
38 |
+
return self.layers(x)
|
39 |
+
|
40 |
+
|
41 |
+
class DepthWise(Module):
|
42 |
+
def __init__(self, in_c, out_c, residual=False, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=1):
|
43 |
+
super(DepthWise, self).__init__()
|
44 |
+
self.residual = residual
|
45 |
+
self.layers = nn.Sequential(
|
46 |
+
ConvBlock(in_c, out_c=groups, kernel=(1, 1), padding=(0, 0), stride=(1, 1)),
|
47 |
+
ConvBlock(groups, groups, groups=groups, kernel=kernel, padding=padding, stride=stride),
|
48 |
+
LinearBlock(groups, out_c, kernel=(1, 1), padding=(0, 0), stride=(1, 1))
|
49 |
+
)
|
50 |
+
|
51 |
+
def forward(self, x):
|
52 |
+
short_cut = None
|
53 |
+
if self.residual:
|
54 |
+
short_cut = x
|
55 |
+
x = self.layers(x)
|
56 |
+
if self.residual:
|
57 |
+
output = short_cut + x
|
58 |
+
else:
|
59 |
+
output = x
|
60 |
+
return output
|
61 |
+
|
62 |
+
|
63 |
+
class Residual(Module):
|
64 |
+
def __init__(self, c, num_block, groups, kernel=(3, 3), stride=(1, 1), padding=(1, 1)):
|
65 |
+
super(Residual, self).__init__()
|
66 |
+
modules = []
|
67 |
+
for _ in range(num_block):
|
68 |
+
modules.append(DepthWise(c, c, True, kernel, stride, padding, groups))
|
69 |
+
self.layers = Sequential(*modules)
|
70 |
+
|
71 |
+
def forward(self, x):
|
72 |
+
return self.layers(x)
|
73 |
+
|
74 |
+
|
75 |
+
class GDC(Module):
|
76 |
+
def __init__(self, embedding_size):
|
77 |
+
super(GDC, self).__init__()
|
78 |
+
self.layers = nn.Sequential(
|
79 |
+
LinearBlock(512, 512, groups=512, kernel=(7, 7), stride=(1, 1), padding=(0, 0)),
|
80 |
+
Flatten(),
|
81 |
+
Linear(512, embedding_size, bias=False),
|
82 |
+
BatchNorm1d(embedding_size))
|
83 |
+
|
84 |
+
def forward(self, x):
|
85 |
+
return self.layers(x)
|
86 |
+
|
87 |
+
|
88 |
+
class MobileFaceNet(Module):
|
89 |
+
def __init__(self, fp16=False, num_features=512):
|
90 |
+
super(MobileFaceNet, self).__init__()
|
91 |
+
scale = 2
|
92 |
+
self.fp16 = fp16
|
93 |
+
self.layers = nn.Sequential(
|
94 |
+
ConvBlock(3, 64 * scale, kernel=(3, 3), stride=(2, 2), padding=(1, 1)),
|
95 |
+
ConvBlock(64 * scale, 64 * scale, kernel=(3, 3), stride=(1, 1), padding=(1, 1), groups=64),
|
96 |
+
DepthWise(64 * scale, 64 * scale, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=128),
|
97 |
+
Residual(64 * scale, num_block=4, groups=128, kernel=(3, 3), stride=(1, 1), padding=(1, 1)),
|
98 |
+
DepthWise(64 * scale, 128 * scale, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=256),
|
99 |
+
Residual(128 * scale, num_block=6, groups=256, kernel=(3, 3), stride=(1, 1), padding=(1, 1)),
|
100 |
+
DepthWise(128 * scale, 128 * scale, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=512),
|
101 |
+
Residual(128 * scale, num_block=2, groups=256, kernel=(3, 3), stride=(1, 1), padding=(1, 1)),
|
102 |
+
)
|
103 |
+
self.conv_sep = ConvBlock(128 * scale, 512, kernel=(1, 1), stride=(1, 1), padding=(0, 0))
|
104 |
+
self.features = GDC(num_features)
|
105 |
+
self._initialize_weights()
|
106 |
+
|
107 |
+
def _initialize_weights(self):
|
108 |
+
for m in self.modules():
|
109 |
+
if isinstance(m, nn.Conv2d):
|
110 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
111 |
+
if m.bias is not None:
|
112 |
+
m.bias.data.zero_()
|
113 |
+
elif isinstance(m, nn.BatchNorm2d):
|
114 |
+
m.weight.data.fill_(1)
|
115 |
+
m.bias.data.zero_()
|
116 |
+
elif isinstance(m, nn.Linear):
|
117 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
118 |
+
if m.bias is not None:
|
119 |
+
m.bias.data.zero_()
|
120 |
+
|
121 |
+
def forward(self, x):
|
122 |
+
with torch.cuda.amp.autocast(self.fp16):
|
123 |
+
x = self.layers(x)
|
124 |
+
x = self.conv_sep(x.float() if self.fp16 else x)
|
125 |
+
x = self.features(x)
|
126 |
+
return x
|
127 |
+
|
128 |
+
|
129 |
+
def get_mbf(fp16, num_features):
|
130 |
+
return MobileFaceNet(fp16, num_features)
|
PTI/criteria/deeplab.py
ADDED
@@ -0,0 +1,353 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Taken from the https://github.com/chenxi116/DeepLabv3.pytorch repository.
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import math
|
6 |
+
import torch.utils.model_zoo as model_zoo
|
7 |
+
from torch.nn import functional as F
|
8 |
+
import os
|
9 |
+
|
10 |
+
|
11 |
+
__all__ = ["ResNet", "resnet50", "resnet101", "resnet152"]
|
12 |
+
|
13 |
+
|
14 |
+
model_urls = {
|
15 |
+
"resnet50": "https://download.pytorch.org/models/resnet50-19c8e357.pth",
|
16 |
+
"resnet101": "https://download.pytorch.org/models/resnet101-5d3b4d8f.pth",
|
17 |
+
"resnet152": "https://download.pytorch.org/models/resnet152-b121ed2d.pth",
|
18 |
+
}
|
19 |
+
|
20 |
+
|
21 |
+
class Conv2d(nn.Conv2d):
|
22 |
+
def __init__(
|
23 |
+
self,
|
24 |
+
in_channels,
|
25 |
+
out_channels,
|
26 |
+
kernel_size,
|
27 |
+
stride=1,
|
28 |
+
padding=0,
|
29 |
+
dilation=1,
|
30 |
+
groups=1,
|
31 |
+
bias=True,
|
32 |
+
):
|
33 |
+
super(Conv2d, self).__init__(
|
34 |
+
in_channels,
|
35 |
+
out_channels,
|
36 |
+
kernel_size,
|
37 |
+
stride,
|
38 |
+
padding,
|
39 |
+
dilation,
|
40 |
+
groups,
|
41 |
+
bias,
|
42 |
+
)
|
43 |
+
|
44 |
+
def forward(self, x):
|
45 |
+
# return super(Conv2d, self).forward(x)
|
46 |
+
weight = self.weight
|
47 |
+
weight_mean = (
|
48 |
+
weight.mean(dim=1, keepdim=True)
|
49 |
+
.mean(dim=2, keepdim=True)
|
50 |
+
.mean(dim=3, keepdim=True)
|
51 |
+
)
|
52 |
+
weight = weight - weight_mean
|
53 |
+
std = weight.view(weight.size(0), -1).std(dim=1).view(-1, 1, 1, 1) + 1e-5
|
54 |
+
weight = weight / std.expand_as(weight)
|
55 |
+
return F.conv2d(
|
56 |
+
x, weight, self.bias, self.stride, self.padding, self.dilation, self.groups
|
57 |
+
)
|
58 |
+
|
59 |
+
|
60 |
+
class ASPP(nn.Module):
|
61 |
+
def __init__(
|
62 |
+
self,
|
63 |
+
C,
|
64 |
+
depth,
|
65 |
+
num_classes,
|
66 |
+
conv=nn.Conv2d,
|
67 |
+
norm=nn.BatchNorm2d,
|
68 |
+
momentum=0.0003,
|
69 |
+
mult=1,
|
70 |
+
):
|
71 |
+
super(ASPP, self).__init__()
|
72 |
+
self._C = C
|
73 |
+
self._depth = depth
|
74 |
+
self._num_classes = num_classes
|
75 |
+
|
76 |
+
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
77 |
+
self.relu = nn.ReLU(inplace=True)
|
78 |
+
self.aspp1 = conv(C, depth, kernel_size=1, stride=1, bias=False)
|
79 |
+
self.aspp2 = conv(
|
80 |
+
C,
|
81 |
+
depth,
|
82 |
+
kernel_size=3,
|
83 |
+
stride=1,
|
84 |
+
dilation=int(6 * mult),
|
85 |
+
padding=int(6 * mult),
|
86 |
+
bias=False,
|
87 |
+
)
|
88 |
+
self.aspp3 = conv(
|
89 |
+
C,
|
90 |
+
depth,
|
91 |
+
kernel_size=3,
|
92 |
+
stride=1,
|
93 |
+
dilation=int(12 * mult),
|
94 |
+
padding=int(12 * mult),
|
95 |
+
bias=False,
|
96 |
+
)
|
97 |
+
self.aspp4 = conv(
|
98 |
+
C,
|
99 |
+
depth,
|
100 |
+
kernel_size=3,
|
101 |
+
stride=1,
|
102 |
+
dilation=int(18 * mult),
|
103 |
+
padding=int(18 * mult),
|
104 |
+
bias=False,
|
105 |
+
)
|
106 |
+
self.aspp5 = conv(C, depth, kernel_size=1, stride=1, bias=False)
|
107 |
+
self.aspp1_bn = norm(depth, momentum)
|
108 |
+
self.aspp2_bn = norm(depth, momentum)
|
109 |
+
self.aspp3_bn = norm(depth, momentum)
|
110 |
+
self.aspp4_bn = norm(depth, momentum)
|
111 |
+
self.aspp5_bn = norm(depth, momentum)
|
112 |
+
self.conv2 = conv(depth * 5, depth, kernel_size=1, stride=1, bias=False)
|
113 |
+
self.bn2 = norm(depth, momentum)
|
114 |
+
self.conv3 = nn.Conv2d(depth, num_classes, kernel_size=1, stride=1)
|
115 |
+
|
116 |
+
def forward(self, x):
|
117 |
+
x1 = self.aspp1(x)
|
118 |
+
x1 = self.aspp1_bn(x1)
|
119 |
+
x1 = self.relu(x1)
|
120 |
+
x2 = self.aspp2(x)
|
121 |
+
x2 = self.aspp2_bn(x2)
|
122 |
+
x2 = self.relu(x2)
|
123 |
+
x3 = self.aspp3(x)
|
124 |
+
x3 = self.aspp3_bn(x3)
|
125 |
+
x3 = self.relu(x3)
|
126 |
+
x4 = self.aspp4(x)
|
127 |
+
x4 = self.aspp4_bn(x4)
|
128 |
+
x4 = self.relu(x4)
|
129 |
+
x5 = self.global_pooling(x)
|
130 |
+
x5 = self.aspp5(x5)
|
131 |
+
x5 = self.aspp5_bn(x5)
|
132 |
+
x5 = self.relu(x5)
|
133 |
+
x5 = nn.Upsample((x.shape[2], x.shape[3]), mode="bilinear", align_corners=True)(
|
134 |
+
x5
|
135 |
+
)
|
136 |
+
x = torch.cat((x1, x2, x3, x4, x5), 1)
|
137 |
+
x = self.conv2(x)
|
138 |
+
x = self.bn2(x)
|
139 |
+
x = self.relu(x)
|
140 |
+
x = self.conv3(x)
|
141 |
+
|
142 |
+
return x
|
143 |
+
|
144 |
+
|
145 |
+
class Bottleneck(nn.Module):
|
146 |
+
expansion = 4
|
147 |
+
|
148 |
+
def __init__(
|
149 |
+
self,
|
150 |
+
inplanes,
|
151 |
+
planes,
|
152 |
+
stride=1,
|
153 |
+
downsample=None,
|
154 |
+
dilation=1,
|
155 |
+
conv=None,
|
156 |
+
norm=None,
|
157 |
+
):
|
158 |
+
super(Bottleneck, self).__init__()
|
159 |
+
self.conv1 = conv(inplanes, planes, kernel_size=1, bias=False)
|
160 |
+
self.bn1 = norm(planes)
|
161 |
+
self.conv2 = conv(
|
162 |
+
planes,
|
163 |
+
planes,
|
164 |
+
kernel_size=3,
|
165 |
+
stride=stride,
|
166 |
+
dilation=dilation,
|
167 |
+
padding=dilation,
|
168 |
+
bias=False,
|
169 |
+
)
|
170 |
+
self.bn2 = norm(planes)
|
171 |
+
self.conv3 = conv(planes, planes * self.expansion, kernel_size=1, bias=False)
|
172 |
+
self.bn3 = norm(planes * self.expansion)
|
173 |
+
self.relu = nn.ReLU(inplace=True)
|
174 |
+
self.downsample = downsample
|
175 |
+
self.stride = stride
|
176 |
+
|
177 |
+
def forward(self, x):
|
178 |
+
residual = x
|
179 |
+
|
180 |
+
out = self.conv1(x)
|
181 |
+
out = self.bn1(out)
|
182 |
+
out = self.relu(out)
|
183 |
+
|
184 |
+
out = self.conv2(out)
|
185 |
+
out = self.bn2(out)
|
186 |
+
out = self.relu(out)
|
187 |
+
|
188 |
+
out = self.conv3(out)
|
189 |
+
out = self.bn3(out)
|
190 |
+
|
191 |
+
if self.downsample is not None:
|
192 |
+
residual = self.downsample(x)
|
193 |
+
|
194 |
+
out += residual
|
195 |
+
out = self.relu(out)
|
196 |
+
|
197 |
+
return out
|
198 |
+
|
199 |
+
|
200 |
+
class ResNet(nn.Module):
|
201 |
+
def __init__(
|
202 |
+
self, block, layers, num_classes, num_groups=None, weight_std=False, beta=False
|
203 |
+
):
|
204 |
+
self.inplanes = 64
|
205 |
+
self.norm = (
|
206 |
+
lambda planes, momentum=0.05: nn.BatchNorm2d(planes, momentum=momentum)
|
207 |
+
if num_groups is None
|
208 |
+
else nn.GroupNorm(num_groups, planes)
|
209 |
+
)
|
210 |
+
self.conv = Conv2d if weight_std else nn.Conv2d
|
211 |
+
|
212 |
+
super(ResNet, self).__init__()
|
213 |
+
if not beta:
|
214 |
+
self.conv1 = self.conv(
|
215 |
+
3, 64, kernel_size=7, stride=2, padding=3, bias=False
|
216 |
+
)
|
217 |
+
else:
|
218 |
+
self.conv1 = nn.Sequential(
|
219 |
+
self.conv(3, 64, 3, stride=2, padding=1, bias=False),
|
220 |
+
self.conv(64, 64, 3, stride=1, padding=1, bias=False),
|
221 |
+
self.conv(64, 64, 3, stride=1, padding=1, bias=False),
|
222 |
+
)
|
223 |
+
self.bn1 = self.norm(64)
|
224 |
+
self.relu = nn.ReLU(inplace=True)
|
225 |
+
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
226 |
+
self.layer1 = self._make_layer(block, 64, layers[0])
|
227 |
+
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
|
228 |
+
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
|
229 |
+
self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=2)
|
230 |
+
self.aspp = ASPP(
|
231 |
+
512 * block.expansion, 256, num_classes, conv=self.conv, norm=self.norm
|
232 |
+
)
|
233 |
+
|
234 |
+
for m in self.modules():
|
235 |
+
if isinstance(m, self.conv):
|
236 |
+
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
237 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / n))
|
238 |
+
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.GroupNorm):
|
239 |
+
m.weight.data.fill_(1)
|
240 |
+
m.bias.data.zero_()
|
241 |
+
|
242 |
+
def _make_layer(self, block, planes, blocks, stride=1, dilation=1):
|
243 |
+
downsample = None
|
244 |
+
if stride != 1 or dilation != 1 or self.inplanes != planes * block.expansion:
|
245 |
+
downsample = nn.Sequential(
|
246 |
+
self.conv(
|
247 |
+
self.inplanes,
|
248 |
+
planes * block.expansion,
|
249 |
+
kernel_size=1,
|
250 |
+
stride=stride,
|
251 |
+
dilation=max(1, dilation / 2),
|
252 |
+
bias=False,
|
253 |
+
),
|
254 |
+
self.norm(planes * block.expansion),
|
255 |
+
)
|
256 |
+
|
257 |
+
layers = []
|
258 |
+
layers.append(
|
259 |
+
block(
|
260 |
+
self.inplanes,
|
261 |
+
planes,
|
262 |
+
stride,
|
263 |
+
downsample,
|
264 |
+
dilation=max(1, dilation / 2),
|
265 |
+
conv=self.conv,
|
266 |
+
norm=self.norm,
|
267 |
+
)
|
268 |
+
)
|
269 |
+
self.inplanes = planes * block.expansion
|
270 |
+
for i in range(1, blocks):
|
271 |
+
layers.append(
|
272 |
+
block(
|
273 |
+
self.inplanes,
|
274 |
+
planes,
|
275 |
+
dilation=dilation,
|
276 |
+
conv=self.conv,
|
277 |
+
norm=self.norm,
|
278 |
+
)
|
279 |
+
)
|
280 |
+
|
281 |
+
return nn.Sequential(*layers)
|
282 |
+
|
283 |
+
def forward(self, x):
|
284 |
+
size = (x.shape[2], x.shape[3])
|
285 |
+
x = self.conv1(x)
|
286 |
+
x = self.bn1(x)
|
287 |
+
x = self.relu(x)
|
288 |
+
x = self.maxpool(x)
|
289 |
+
|
290 |
+
x = self.layer1(x)
|
291 |
+
x = self.layer2(x)
|
292 |
+
x = self.layer3(x)
|
293 |
+
x = self.layer4(x)
|
294 |
+
|
295 |
+
x = self.aspp(x)
|
296 |
+
x = nn.Upsample(size, mode="bilinear", align_corners=True)(x)
|
297 |
+
return x
|
298 |
+
|
299 |
+
|
300 |
+
def resnet50(pretrained=False, **kwargs):
|
301 |
+
"""Constructs a ResNet-50 model.
|
302 |
+
|
303 |
+
Args:
|
304 |
+
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
305 |
+
"""
|
306 |
+
model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
|
307 |
+
if pretrained:
|
308 |
+
model.load_state_dict(model_zoo.load_url(model_urls["resnet50"]))
|
309 |
+
return model
|
310 |
+
|
311 |
+
|
312 |
+
def resnet101(path=None, pretrained=False, num_groups=None, weight_std=False, **kwargs):
|
313 |
+
"""Constructs a ResNet-101 model.
|
314 |
+
|
315 |
+
Args:
|
316 |
+
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
317 |
+
"""
|
318 |
+
model = ResNet(
|
319 |
+
Bottleneck,
|
320 |
+
[3, 4, 23, 3],
|
321 |
+
num_groups=num_groups,
|
322 |
+
weight_std=weight_std,
|
323 |
+
**kwargs
|
324 |
+
)
|
325 |
+
if pretrained:
|
326 |
+
model_dict = model.state_dict()
|
327 |
+
if num_groups and weight_std:
|
328 |
+
path = os.path.join(os.path.dirname(path), "R-101-GN-WS.pth.tar")
|
329 |
+
pretrained_dict = torch.load(path)
|
330 |
+
overlap_dict = {
|
331 |
+
k[7:]: v for k, v in pretrained_dict.items() if k[7:] in model_dict
|
332 |
+
}
|
333 |
+
assert len(overlap_dict) == 312
|
334 |
+
elif not num_groups and not weight_std:
|
335 |
+
pretrained_dict = model_zoo.load_url(model_urls["resnet101"])
|
336 |
+
overlap_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
|
337 |
+
else:
|
338 |
+
raise ValueError("Currently only support BN or GN+WS")
|
339 |
+
model_dict.update(overlap_dict)
|
340 |
+
model.load_state_dict(model_dict)
|
341 |
+
return model
|
342 |
+
|
343 |
+
|
344 |
+
def resnet152(pretrained=False, **kwargs):
|
345 |
+
"""Constructs a ResNet-152 model.
|
346 |
+
|
347 |
+
Args:
|
348 |
+
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
349 |
+
"""
|
350 |
+
model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
|
351 |
+
if pretrained:
|
352 |
+
model.load_state_dict(model_zoo.load_url(model_urls["resnet152"]))
|
353 |
+
return model
|
PTI/criteria/helpers.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import namedtuple
|
2 |
+
import torch
|
3 |
+
from torch.nn import Conv2d, BatchNorm2d, PReLU, ReLU, Sigmoid, MaxPool2d, AdaptiveAvgPool2d, Sequential, Module
|
4 |
+
|
5 |
+
"""
|
6 |
+
ArcFace implementation from [TreB1eN](https://github.com/TreB1eN/InsightFace_Pytorch)
|
7 |
+
"""
|
8 |
+
|
9 |
+
|
10 |
+
class Flatten(Module):
|
11 |
+
def forward(self, input):
|
12 |
+
return input.view(input.size(0), -1)
|
13 |
+
|
14 |
+
|
15 |
+
def l2_norm(input, axis=1):
|
16 |
+
norm = torch.norm(input, 2, axis, True)
|
17 |
+
output = torch.div(input, norm)
|
18 |
+
return output
|
19 |
+
|
20 |
+
|
21 |
+
class Bottleneck(namedtuple('Block', ['in_channel', 'depth', 'stride'])):
|
22 |
+
""" A named tuple describing a ResNet block. """
|
23 |
+
|
24 |
+
|
25 |
+
def get_block(in_channel, depth, num_units, stride=2):
|
26 |
+
return [Bottleneck(in_channel, depth, stride)] + [Bottleneck(depth, depth, 1) for i in range(num_units - 1)]
|
27 |
+
|
28 |
+
|
29 |
+
def get_blocks(num_layers):
|
30 |
+
if num_layers == 50:
|
31 |
+
blocks = [
|
32 |
+
get_block(in_channel=64, depth=64, num_units=3),
|
33 |
+
get_block(in_channel=64, depth=128, num_units=4),
|
34 |
+
get_block(in_channel=128, depth=256, num_units=14),
|
35 |
+
get_block(in_channel=256, depth=512, num_units=3)
|
36 |
+
]
|
37 |
+
elif num_layers == 100:
|
38 |
+
blocks = [
|
39 |
+
get_block(in_channel=64, depth=64, num_units=3),
|
40 |
+
get_block(in_channel=64, depth=128, num_units=13),
|
41 |
+
get_block(in_channel=128, depth=256, num_units=30),
|
42 |
+
get_block(in_channel=256, depth=512, num_units=3)
|
43 |
+
]
|
44 |
+
elif num_layers == 152:
|
45 |
+
blocks = [
|
46 |
+
get_block(in_channel=64, depth=64, num_units=3),
|
47 |
+
get_block(in_channel=64, depth=128, num_units=8),
|
48 |
+
get_block(in_channel=128, depth=256, num_units=36),
|
49 |
+
get_block(in_channel=256, depth=512, num_units=3)
|
50 |
+
]
|
51 |
+
else:
|
52 |
+
raise ValueError("Invalid number of layers: {}. Must be one of [50, 100, 152]".format(num_layers))
|
53 |
+
return blocks
|
54 |
+
|
55 |
+
|
56 |
+
class SEModule(Module):
|
57 |
+
def __init__(self, channels, reduction):
|
58 |
+
super(SEModule, self).__init__()
|
59 |
+
self.avg_pool = AdaptiveAvgPool2d(1)
|
60 |
+
self.fc1 = Conv2d(channels, channels // reduction, kernel_size=1, padding=0, bias=False)
|
61 |
+
self.relu = ReLU(inplace=True)
|
62 |
+
self.fc2 = Conv2d(channels // reduction, channels, kernel_size=1, padding=0, bias=False)
|
63 |
+
self.sigmoid = Sigmoid()
|
64 |
+
|
65 |
+
def forward(self, x):
|
66 |
+
module_input = x
|
67 |
+
x = self.avg_pool(x)
|
68 |
+
x = self.fc1(x)
|
69 |
+
x = self.relu(x)
|
70 |
+
x = self.fc2(x)
|
71 |
+
x = self.sigmoid(x)
|
72 |
+
return module_input * x
|
73 |
+
|
74 |
+
|
75 |
+
class bottleneck_IR(Module):
|
76 |
+
def __init__(self, in_channel, depth, stride):
|
77 |
+
super(bottleneck_IR, self).__init__()
|
78 |
+
if in_channel == depth:
|
79 |
+
self.shortcut_layer = MaxPool2d(1, stride)
|
80 |
+
else:
|
81 |
+
self.shortcut_layer = Sequential(
|
82 |
+
Conv2d(in_channel, depth, (1, 1), stride, bias=False),
|
83 |
+
BatchNorm2d(depth)
|
84 |
+
)
|
85 |
+
self.res_layer = Sequential(
|
86 |
+
BatchNorm2d(in_channel),
|
87 |
+
Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), PReLU(depth),
|
88 |
+
Conv2d(depth, depth, (3, 3), stride, 1, bias=False), BatchNorm2d(depth)
|
89 |
+
)
|
90 |
+
|
91 |
+
def forward(self, x):
|
92 |
+
shortcut = self.shortcut_layer(x)
|
93 |
+
res = self.res_layer(x)
|
94 |
+
return res + shortcut
|
95 |
+
|
96 |
+
|
97 |
+
class bottleneck_IR_SE(Module):
|
98 |
+
def __init__(self, in_channel, depth, stride):
|
99 |
+
super(bottleneck_IR_SE, self).__init__()
|
100 |
+
if in_channel == depth:
|
101 |
+
self.shortcut_layer = MaxPool2d(1, stride)
|
102 |
+
else:
|
103 |
+
self.shortcut_layer = Sequential(
|
104 |
+
Conv2d(in_channel, depth, (1, 1), stride, bias=False),
|
105 |
+
BatchNorm2d(depth)
|
106 |
+
)
|
107 |
+
self.res_layer = Sequential(
|
108 |
+
BatchNorm2d(in_channel),
|
109 |
+
Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False),
|
110 |
+
PReLU(depth),
|
111 |
+
Conv2d(depth, depth, (3, 3), stride, 1, bias=False),
|
112 |
+
BatchNorm2d(depth),
|
113 |
+
SEModule(depth, 16)
|
114 |
+
)
|
115 |
+
|
116 |
+
def forward(self, x):
|
117 |
+
shortcut = self.shortcut_layer(x)
|
118 |
+
res = self.res_layer(x)
|
119 |
+
return res + shortcut
|
PTI/criteria/id_loss.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from criteria.model_irse import Backbone
|
5 |
+
from criteria.backbones import get_model
|
6 |
+
|
7 |
+
|
8 |
+
class IDLoss(nn.Module):
|
9 |
+
"""
|
10 |
+
Computes a cosine similarity between people in two images.
|
11 |
+
Taken from TreB1eN's [1] implementation of InsightFace [2, 3], as used in pixel2style2pixel [4].
|
12 |
+
|
13 |
+
[1] https://github.com/TreB1eN/InsightFace_Pytorch
|
14 |
+
[2] https://github.com/deepinsight/insightface
|
15 |
+
[3] Deng, Jiankang and Guo, Jia and Niannan, Xue and Zafeiriou, Stefanos.
|
16 |
+
ArcFace: Additive Angular Margin Loss for Deep Face Recognition. In CVPR, 2019
|
17 |
+
[4] https://github.com/eladrich/pixel2style2pixel
|
18 |
+
"""
|
19 |
+
|
20 |
+
def __init__(self, model_path, official=False):
|
21 |
+
"""
|
22 |
+
Arguments:
|
23 |
+
model_path (str): Path to IR-SE50 model.
|
24 |
+
"""
|
25 |
+
super(IDLoss, self).__init__()
|
26 |
+
print("Loading ResNet ArcFace")
|
27 |
+
self.official = official
|
28 |
+
if official:
|
29 |
+
self.facenet = get_model("r100", fp16=False)
|
30 |
+
else:
|
31 |
+
self.facenet = Backbone(
|
32 |
+
input_size=112, num_layers=50, drop_ratio=0.6, mode="ir_se"
|
33 |
+
)
|
34 |
+
|
35 |
+
self.facenet.load_state_dict(torch.load(model_path))
|
36 |
+
self.face_pool = torch.nn.AdaptiveAvgPool2d((112, 112))
|
37 |
+
self.facenet.eval()
|
38 |
+
|
39 |
+
def extract_feats(self, x):
|
40 |
+
x = x[:, :, 35:223, 32:220] # Crop interesting region
|
41 |
+
x = self.face_pool(x)
|
42 |
+
x_feats = self.facenet(x)
|
43 |
+
return x_feats
|
44 |
+
|
45 |
+
def forward(self, x, y):
|
46 |
+
"""
|
47 |
+
Arguments:
|
48 |
+
x (Tensor): The batch of original images
|
49 |
+
y (Tensor): The batch of generated images
|
50 |
+
|
51 |
+
Returns:
|
52 |
+
loss (Tensor): Cosine similarity between the
|
53 |
+
features of the original and generated images.
|
54 |
+
|
55 |
+
"""
|
56 |
+
|
57 |
+
x_feats = self.extract_feats(x)
|
58 |
+
y_feats = self.extract_feats(y)
|
59 |
+
if self.official:
|
60 |
+
x_feats = F.normalize(x_feats)
|
61 |
+
y_feats = F.normalize(y_feats)
|
62 |
+
|
63 |
+
loss = (1 - (x_feats * y_feats).sum(dim=1)).mean()
|
64 |
+
return loss
|
PTI/criteria/l2_loss.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchvision
|
3 |
+
|
4 |
+
l2_criterion = torch.nn.MSELoss(reduction="mean")
|
5 |
+
|
6 |
+
|
7 |
+
def l2_loss(real_images, generated_images, gray=False):
|
8 |
+
if gray:
|
9 |
+
real_images = torchvision.transforms.functional.rgb_to_grayscale(real_images)
|
10 |
+
generated_images = torchvision.transforms.functional.rgb_to_grayscale(
|
11 |
+
generated_images
|
12 |
+
)
|
13 |
+
loss = l2_criterion(real_images, generated_images)
|
14 |
+
return loss
|
PTI/criteria/localitly_regulizer.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import wandb
|
4 |
+
from criteria import l2_loss
|
5 |
+
from configs import hyperparameters
|
6 |
+
from configs import global_config
|
7 |
+
|
8 |
+
|
9 |
+
class Space_Regulizer:
|
10 |
+
def __init__(self, original_G, lpips_net):
|
11 |
+
self.original_G = original_G
|
12 |
+
self.morphing_regulizer_alpha = hyperparameters.regulizer_alpha
|
13 |
+
self.lpips_loss = lpips_net
|
14 |
+
|
15 |
+
def get_morphed_w_code(self, new_w_code, fixed_w):
|
16 |
+
interpolation_direction = new_w_code - fixed_w
|
17 |
+
interpolation_direction_norm = torch.norm(interpolation_direction, p=2)
|
18 |
+
direction_to_move = hyperparameters.regulizer_alpha * interpolation_direction / interpolation_direction_norm
|
19 |
+
result_w = fixed_w + direction_to_move
|
20 |
+
self.morphing_regulizer_alpha * fixed_w + (1 - self.morphing_regulizer_alpha) * new_w_code
|
21 |
+
|
22 |
+
return result_w
|
23 |
+
|
24 |
+
def get_image_from_ws(self, w_codes, G):
|
25 |
+
return torch.cat([G.synthesis(w_code, noise_mode='none', force_fp32=True) for w_code in w_codes])
|
26 |
+
|
27 |
+
def ball_holder_loss_lazy(self, new_G, num_of_sampled_latents, w_batch, use_wandb=False):
|
28 |
+
loss = 0.0
|
29 |
+
|
30 |
+
z_samples = np.random.randn(num_of_sampled_latents, self.original_G.z_dim)
|
31 |
+
w_samples = self.original_G.mapping(torch.from_numpy(z_samples).to(global_config.device), None,
|
32 |
+
truncation_psi=0.5)
|
33 |
+
territory_indicator_ws = [self.get_morphed_w_code(w_code.unsqueeze(0), w_batch) for w_code in w_samples]
|
34 |
+
|
35 |
+
for w_code in territory_indicator_ws:
|
36 |
+
new_img = new_G.synthesis(w_code, noise_mode='none', force_fp32=True)
|
37 |
+
with torch.no_grad():
|
38 |
+
old_img = self.original_G.synthesis(w_code, noise_mode='none', force_fp32=True)
|
39 |
+
|
40 |
+
if hyperparameters.regulizer_l2_lambda > 0:
|
41 |
+
l2_loss_val = l2_loss.l2_loss(old_img, new_img)
|
42 |
+
if use_wandb:
|
43 |
+
wandb.log({f'space_regulizer_l2_loss_val': l2_loss_val.detach().cpu()},
|
44 |
+
step=global_config.training_step)
|
45 |
+
loss += l2_loss_val * hyperparameters.regulizer_l2_lambda
|
46 |
+
|
47 |
+
if hyperparameters.regulizer_lpips_lambda > 0:
|
48 |
+
loss_lpips = self.lpips_loss(old_img, new_img)
|
49 |
+
loss_lpips = torch.mean(torch.squeeze(loss_lpips))
|
50 |
+
if use_wandb:
|
51 |
+
wandb.log({f'space_regulizer_lpips_loss_val': loss_lpips.detach().cpu()},
|
52 |
+
step=global_config.training_step)
|
53 |
+
loss += loss_lpips * hyperparameters.regulizer_lpips_lambda
|
54 |
+
|
55 |
+
return loss / len(territory_indicator_ws)
|
56 |
+
|
57 |
+
def space_regulizer_loss(self, new_G, w_batch, use_wandb):
|
58 |
+
ret_val = self.ball_holder_loss_lazy(new_G, hyperparameters.latent_ball_num_of_samples, w_batch, use_wandb)
|
59 |
+
return ret_val
|
PTI/criteria/mask.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchvision.transforms as transforms
|
3 |
+
import criteria.deeplab as deeplab
|
4 |
+
import PIL.Image as Image
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from configs import paths_config, global_config
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
|
11 |
+
class Mask(nn.Module):
|
12 |
+
def __init__(self):
|
13 |
+
"""
|
14 |
+
|
15 |
+
| Class | Number | Class | Number |
|
16 |
+
|------------|--------|-------|--------|
|
17 |
+
| background | 0 | mouth | 10 |
|
18 |
+
| skin | 1 | u_lip | 11 |
|
19 |
+
| nose | 2 | l_lip | 12 |
|
20 |
+
| eye_g | 3 | hair | 13 |
|
21 |
+
| l_eye | 4 | hat | 14 |
|
22 |
+
| r_eye | 5 | ear_r | 15 |
|
23 |
+
| l_brow | 6 | neck_l| 16 |
|
24 |
+
| r_brow | 7 | neck | 17 |
|
25 |
+
| l_ear | 8 | cloth | 18 |
|
26 |
+
| r_ear | 9 |
|
27 |
+
|
28 |
+
"""
|
29 |
+
super().__init__()
|
30 |
+
|
31 |
+
self.seg_model = (
|
32 |
+
getattr(deeplab, "resnet101")(
|
33 |
+
path=paths_config.deeplab,
|
34 |
+
pretrained=True,
|
35 |
+
num_classes=19,
|
36 |
+
num_groups=32,
|
37 |
+
weight_std=True,
|
38 |
+
beta=False,
|
39 |
+
)
|
40 |
+
.eval()
|
41 |
+
.requires_grad_(False)
|
42 |
+
)
|
43 |
+
|
44 |
+
ckpt = torch.load(paths_config.deeplab, map_location=global_config.device)
|
45 |
+
state_dict = {
|
46 |
+
k[7:]: v for k, v in ckpt["state_dict"].items() if "tracked" not in k
|
47 |
+
}
|
48 |
+
self.seg_model.load_state_dict(state_dict)
|
49 |
+
self.seg_model = self.seg_model.to(global_config.device)
|
50 |
+
|
51 |
+
self.labels = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 17]
|
52 |
+
self.kernel = torch.ones((1, 1, 25, 25), device=global_config.device)
|
53 |
+
|
54 |
+
def get_labels(self, img):
|
55 |
+
"""Returns a mask from an input image"""
|
56 |
+
data_transforms = transforms.Compose(
|
57 |
+
[
|
58 |
+
transforms.Resize((513, 513)),
|
59 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
60 |
+
]
|
61 |
+
)
|
62 |
+
img = data_transforms(img)
|
63 |
+
with torch.no_grad():
|
64 |
+
out = self.seg_model(img)
|
65 |
+
_, label = torch.max(out, 1)
|
66 |
+
label = label.unsqueeze(0).type(torch.float32)
|
67 |
+
|
68 |
+
label = (
|
69 |
+
F.interpolate(label, size=(256, 256), mode="nearest")
|
70 |
+
.squeeze()
|
71 |
+
.type(torch.LongTensor)
|
72 |
+
)
|
73 |
+
return label
|
74 |
+
|
75 |
+
def get_mask(self, label):
|
76 |
+
mask = torch.zeros_like(label, device=global_config.device, dtype=torch.float)
|
77 |
+
for idx in self.labels:
|
78 |
+
mask[label == idx] = 1
|
79 |
+
|
80 |
+
# smooth the mask with a mean convolution
|
81 |
+
"""mask = (
|
82 |
+
1
|
83 |
+
- torch.clamp(
|
84 |
+
torch.nn.functional.conv2d(
|
85 |
+
1 - mask[None, None, :, :], self.kernel, padding="same"
|
86 |
+
),
|
87 |
+
0,
|
88 |
+
1,
|
89 |
+
).squeeze()
|
90 |
+
)"""
|
91 |
+
""" mask = torch.clamp(
|
92 |
+
torch.nn.functional.conv2d(
|
93 |
+
mask[None, None, :, :], self.kernel, padding="same"
|
94 |
+
),
|
95 |
+
0,
|
96 |
+
1,
|
97 |
+
).squeeze()"""
|
98 |
+
mask[label == 13] = 0.1
|
99 |
+
return mask
|
100 |
+
|
101 |
+
def forward(self, real_imgs, generated_imgs):
|
102 |
+
#return real_imgs, generated_imgs
|
103 |
+
label = self.get_labels(real_imgs)
|
104 |
+
mask = self.get_mask(label)
|
105 |
+
real_imgs = real_imgs * mask
|
106 |
+
generated_imgs = generated_imgs * mask
|
107 |
+
|
108 |
+
"""out = (real_imgs * mask).squeeze().detach()
|
109 |
+
|
110 |
+
out = (out.permute(1, 2, 0) * 127.5 + 127.5).clamp(0, 255).to(torch.uint8)
|
111 |
+
Image.fromarray(out.cpu().numpy()).save("real_mask.png")
|
112 |
+
|
113 |
+
out = (generated_imgs).squeeze().detach()
|
114 |
+
|
115 |
+
out = (out.permute(1, 2, 0) * 127.5 + 127.5).clamp(0, 255).to(torch.uint8)
|
116 |
+
Image.fromarray(out.cpu().numpy()).save("generated_mask.png")
|
117 |
+
|
118 |
+
mask = (mask).squeeze().detach()
|
119 |
+
mask = mask.repeat(3, 1, 1)
|
120 |
+
mask = (mask.permute(1, 2, 0) * 127.5 + 127.5).clamp(0, 255).to(torch.uint8)
|
121 |
+
Image.fromarray(mask.cpu().numpy()).save("mask.png")"""
|
122 |
+
|
123 |
+
return real_imgs, generated_imgs
|
PTI/criteria/model_irse.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.nn import (
|
2 |
+
Linear,
|
3 |
+
Conv2d,
|
4 |
+
BatchNorm1d,
|
5 |
+
BatchNorm2d,
|
6 |
+
PReLU,
|
7 |
+
Dropout,
|
8 |
+
Sequential,
|
9 |
+
Module,
|
10 |
+
)
|
11 |
+
from criteria.helpers import (
|
12 |
+
get_blocks,
|
13 |
+
Flatten,
|
14 |
+
bottleneck_IR,
|
15 |
+
bottleneck_IR_SE,
|
16 |
+
l2_norm,
|
17 |
+
)
|
18 |
+
|
19 |
+
"""
|
20 |
+
Modified Backbone implementation from [TreB1eN](https://github.com/TreB1eN/InsightFace_Pytorch)
|
21 |
+
"""
|
22 |
+
|
23 |
+
|
24 |
+
class Backbone(Module):
|
25 |
+
def __init__(self, input_size, num_layers, mode="ir", drop_ratio=0.4, affine=True):
|
26 |
+
super(Backbone, self).__init__()
|
27 |
+
assert input_size in [112, 224], "input_size should be 112 or 224"
|
28 |
+
assert num_layers in [50, 100, 152], "num_layers should be 50, 100 or 152"
|
29 |
+
assert mode in ["ir", "ir_se"], "mode should be ir or ir_se"
|
30 |
+
blocks = get_blocks(num_layers)
|
31 |
+
if mode == "ir":
|
32 |
+
unit_module = bottleneck_IR
|
33 |
+
elif mode == "ir_se":
|
34 |
+
unit_module = bottleneck_IR_SE
|
35 |
+
self.input_layer = Sequential(
|
36 |
+
Conv2d(3, 64, (3, 3), 1, 1, bias=False), BatchNorm2d(64), PReLU(64)
|
37 |
+
)
|
38 |
+
if input_size == 112:
|
39 |
+
self.output_layer = Sequential(
|
40 |
+
BatchNorm2d(512),
|
41 |
+
Dropout(drop_ratio),
|
42 |
+
Flatten(),
|
43 |
+
Linear(512 * 7 * 7, 512),
|
44 |
+
BatchNorm1d(512, affine=affine),
|
45 |
+
)
|
46 |
+
else:
|
47 |
+
self.output_layer = Sequential(
|
48 |
+
BatchNorm2d(512),
|
49 |
+
Dropout(drop_ratio),
|
50 |
+
Flatten(),
|
51 |
+
Linear(512 * 14 * 14, 512),
|
52 |
+
BatchNorm1d(512, affine=affine),
|
53 |
+
)
|
54 |
+
|
55 |
+
modules = []
|
56 |
+
for block in blocks:
|
57 |
+
for bottleneck in block:
|
58 |
+
modules.append(
|
59 |
+
unit_module(
|
60 |
+
bottleneck.in_channel, bottleneck.depth, bottleneck.stride
|
61 |
+
)
|
62 |
+
)
|
63 |
+
self.body = Sequential(*modules)
|
64 |
+
|
65 |
+
def forward(self, x):
|
66 |
+
x = self.input_layer(x)
|
67 |
+
x = self.body(x)
|
68 |
+
x = self.output_layer(x)
|
69 |
+
return l2_norm(x)
|
70 |
+
|
71 |
+
|
72 |
+
def IR_50(input_size):
|
73 |
+
"""Constructs a ir-50 model."""
|
74 |
+
model = Backbone(input_size, num_layers=50, mode="ir", drop_ratio=0.4, affine=False)
|
75 |
+
return model
|
76 |
+
|
77 |
+
|
78 |
+
def IR_101(input_size):
|
79 |
+
"""Constructs a ir-101 model."""
|
80 |
+
model = Backbone(
|
81 |
+
input_size, num_layers=100, mode="ir", drop_ratio=0.4, affine=False
|
82 |
+
)
|
83 |
+
return model
|
84 |
+
|
85 |
+
|
86 |
+
def IR_152(input_size):
|
87 |
+
"""Constructs a ir-152 model."""
|
88 |
+
model = Backbone(
|
89 |
+
input_size, num_layers=152, mode="ir", drop_ratio=0.4, affine=False
|
90 |
+
)
|
91 |
+
return model
|
92 |
+
|
93 |
+
|
94 |
+
def IR_SE_50(input_size):
|
95 |
+
"""Constructs a ir_se-50 model."""
|
96 |
+
model = Backbone(
|
97 |
+
input_size, num_layers=50, mode="ir_se", drop_ratio=0.4, affine=False
|
98 |
+
)
|
99 |
+
return model
|
100 |
+
|
101 |
+
|
102 |
+
def IR_SE_101(input_size):
|
103 |
+
"""Constructs a ir_se-101 model."""
|
104 |
+
model = Backbone(
|
105 |
+
input_size, num_layers=100, mode="ir_se", drop_ratio=0.4, affine=False
|
106 |
+
)
|
107 |
+
return model
|
108 |
+
|
109 |
+
|
110 |
+
def IR_SE_152(input_size):
|
111 |
+
"""Constructs a ir_se-152 model."""
|
112 |
+
model = Backbone(
|
113 |
+
input_size, num_layers=152, mode="ir_se", drop_ratio=0.4, affine=False
|
114 |
+
)
|
115 |
+
return model
|
PTI/criteria/validation.py
ADDED
File without changes
|
PTI/dnnlib/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
from .util import EasyDict, make_cache_dir_path
|
PTI/dnnlib/util.py
ADDED
@@ -0,0 +1,477 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
"""Miscellaneous utility classes and functions."""
|
10 |
+
|
11 |
+
import ctypes
|
12 |
+
import fnmatch
|
13 |
+
import importlib
|
14 |
+
import inspect
|
15 |
+
import numpy as np
|
16 |
+
import os
|
17 |
+
import shutil
|
18 |
+
import sys
|
19 |
+
import types
|
20 |
+
import io
|
21 |
+
import pickle
|
22 |
+
import re
|
23 |
+
import requests
|
24 |
+
import html
|
25 |
+
import hashlib
|
26 |
+
import glob
|
27 |
+
import tempfile
|
28 |
+
import urllib
|
29 |
+
import urllib.request
|
30 |
+
import uuid
|
31 |
+
|
32 |
+
from distutils.util import strtobool
|
33 |
+
from typing import Any, List, Tuple, Union
|
34 |
+
|
35 |
+
|
36 |
+
# Util classes
|
37 |
+
# ------------------------------------------------------------------------------------------
|
38 |
+
|
39 |
+
|
40 |
+
class EasyDict(dict):
|
41 |
+
"""Convenience class that behaves like a dict but allows access with the attribute syntax."""
|
42 |
+
|
43 |
+
def __getattr__(self, name: str) -> Any:
|
44 |
+
try:
|
45 |
+
return self[name]
|
46 |
+
except KeyError:
|
47 |
+
raise AttributeError(name)
|
48 |
+
|
49 |
+
def __setattr__(self, name: str, value: Any) -> None:
|
50 |
+
self[name] = value
|
51 |
+
|
52 |
+
def __delattr__(self, name: str) -> None:
|
53 |
+
del self[name]
|
54 |
+
|
55 |
+
|
56 |
+
class Logger(object):
|
57 |
+
"""Redirect stderr to stdout, optionally print stdout to a file, and optionally force flushing on both stdout and the file."""
|
58 |
+
|
59 |
+
def __init__(self, file_name: str = None, file_mode: str = "w", should_flush: bool = True):
|
60 |
+
self.file = None
|
61 |
+
|
62 |
+
if file_name is not None:
|
63 |
+
self.file = open(file_name, file_mode)
|
64 |
+
|
65 |
+
self.should_flush = should_flush
|
66 |
+
self.stdout = sys.stdout
|
67 |
+
self.stderr = sys.stderr
|
68 |
+
|
69 |
+
sys.stdout = self
|
70 |
+
sys.stderr = self
|
71 |
+
|
72 |
+
def __enter__(self) -> "Logger":
|
73 |
+
return self
|
74 |
+
|
75 |
+
def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None:
|
76 |
+
self.close()
|
77 |
+
|
78 |
+
def write(self, text: Union[str, bytes]) -> None:
|
79 |
+
"""Write text to stdout (and a file) and optionally flush."""
|
80 |
+
if isinstance(text, bytes):
|
81 |
+
text = text.decode()
|
82 |
+
if len(text) == 0: # workaround for a bug in VSCode debugger: sys.stdout.write(''); sys.stdout.flush() => crash
|
83 |
+
return
|
84 |
+
|
85 |
+
if self.file is not None:
|
86 |
+
self.file.write(text)
|
87 |
+
|
88 |
+
self.stdout.write(text)
|
89 |
+
|
90 |
+
if self.should_flush:
|
91 |
+
self.flush()
|
92 |
+
|
93 |
+
def flush(self) -> None:
|
94 |
+
"""Flush written text to both stdout and a file, if open."""
|
95 |
+
if self.file is not None:
|
96 |
+
self.file.flush()
|
97 |
+
|
98 |
+
self.stdout.flush()
|
99 |
+
|
100 |
+
def close(self) -> None:
|
101 |
+
"""Flush, close possible files, and remove stdout/stderr mirroring."""
|
102 |
+
self.flush()
|
103 |
+
|
104 |
+
# if using multiple loggers, prevent closing in wrong order
|
105 |
+
if sys.stdout is self:
|
106 |
+
sys.stdout = self.stdout
|
107 |
+
if sys.stderr is self:
|
108 |
+
sys.stderr = self.stderr
|
109 |
+
|
110 |
+
if self.file is not None:
|
111 |
+
self.file.close()
|
112 |
+
self.file = None
|
113 |
+
|
114 |
+
|
115 |
+
# Cache directories
|
116 |
+
# ------------------------------------------------------------------------------------------
|
117 |
+
|
118 |
+
_dnnlib_cache_dir = None
|
119 |
+
|
120 |
+
def set_cache_dir(path: str) -> None:
|
121 |
+
global _dnnlib_cache_dir
|
122 |
+
_dnnlib_cache_dir = path
|
123 |
+
|
124 |
+
def make_cache_dir_path(*paths: str) -> str:
|
125 |
+
if _dnnlib_cache_dir is not None:
|
126 |
+
return os.path.join(_dnnlib_cache_dir, *paths)
|
127 |
+
if 'DNNLIB_CACHE_DIR' in os.environ:
|
128 |
+
return os.path.join(os.environ['DNNLIB_CACHE_DIR'], *paths)
|
129 |
+
if 'HOME' in os.environ:
|
130 |
+
return os.path.join(os.environ['HOME'], '.cache', 'dnnlib', *paths)
|
131 |
+
if 'USERPROFILE' in os.environ:
|
132 |
+
return os.path.join(os.environ['USERPROFILE'], '.cache', 'dnnlib', *paths)
|
133 |
+
return os.path.join(tempfile.gettempdir(), '.cache', 'dnnlib', *paths)
|
134 |
+
|
135 |
+
# Small util functions
|
136 |
+
# ------------------------------------------------------------------------------------------
|
137 |
+
|
138 |
+
|
139 |
+
def format_time(seconds: Union[int, float]) -> str:
|
140 |
+
"""Convert the seconds to human readable string with days, hours, minutes and seconds."""
|
141 |
+
s = int(np.rint(seconds))
|
142 |
+
|
143 |
+
if s < 60:
|
144 |
+
return "{0}s".format(s)
|
145 |
+
elif s < 60 * 60:
|
146 |
+
return "{0}m {1:02}s".format(s // 60, s % 60)
|
147 |
+
elif s < 24 * 60 * 60:
|
148 |
+
return "{0}h {1:02}m {2:02}s".format(s // (60 * 60), (s // 60) % 60, s % 60)
|
149 |
+
else:
|
150 |
+
return "{0}d {1:02}h {2:02}m".format(s // (24 * 60 * 60), (s // (60 * 60)) % 24, (s // 60) % 60)
|
151 |
+
|
152 |
+
|
153 |
+
def ask_yes_no(question: str) -> bool:
|
154 |
+
"""Ask the user the question until the user inputs a valid answer."""
|
155 |
+
while True:
|
156 |
+
try:
|
157 |
+
print("{0} [y/n]".format(question))
|
158 |
+
return strtobool(input().lower())
|
159 |
+
except ValueError:
|
160 |
+
pass
|
161 |
+
|
162 |
+
|
163 |
+
def tuple_product(t: Tuple) -> Any:
|
164 |
+
"""Calculate the product of the tuple elements."""
|
165 |
+
result = 1
|
166 |
+
|
167 |
+
for v in t:
|
168 |
+
result *= v
|
169 |
+
|
170 |
+
return result
|
171 |
+
|
172 |
+
|
173 |
+
_str_to_ctype = {
|
174 |
+
"uint8": ctypes.c_ubyte,
|
175 |
+
"uint16": ctypes.c_uint16,
|
176 |
+
"uint32": ctypes.c_uint32,
|
177 |
+
"uint64": ctypes.c_uint64,
|
178 |
+
"int8": ctypes.c_byte,
|
179 |
+
"int16": ctypes.c_int16,
|
180 |
+
"int32": ctypes.c_int32,
|
181 |
+
"int64": ctypes.c_int64,
|
182 |
+
"float32": ctypes.c_float,
|
183 |
+
"float64": ctypes.c_double
|
184 |
+
}
|
185 |
+
|
186 |
+
|
187 |
+
def get_dtype_and_ctype(type_obj: Any) -> Tuple[np.dtype, Any]:
|
188 |
+
"""Given a type name string (or an object having a __name__ attribute), return matching Numpy and ctypes types that have the same size in bytes."""
|
189 |
+
type_str = None
|
190 |
+
|
191 |
+
if isinstance(type_obj, str):
|
192 |
+
type_str = type_obj
|
193 |
+
elif hasattr(type_obj, "__name__"):
|
194 |
+
type_str = type_obj.__name__
|
195 |
+
elif hasattr(type_obj, "name"):
|
196 |
+
type_str = type_obj.name
|
197 |
+
else:
|
198 |
+
raise RuntimeError("Cannot infer type name from input")
|
199 |
+
|
200 |
+
assert type_str in _str_to_ctype.keys()
|
201 |
+
|
202 |
+
my_dtype = np.dtype(type_str)
|
203 |
+
my_ctype = _str_to_ctype[type_str]
|
204 |
+
|
205 |
+
assert my_dtype.itemsize == ctypes.sizeof(my_ctype)
|
206 |
+
|
207 |
+
return my_dtype, my_ctype
|
208 |
+
|
209 |
+
|
210 |
+
def is_pickleable(obj: Any) -> bool:
|
211 |
+
try:
|
212 |
+
with io.BytesIO() as stream:
|
213 |
+
pickle.dump(obj, stream)
|
214 |
+
return True
|
215 |
+
except:
|
216 |
+
return False
|
217 |
+
|
218 |
+
|
219 |
+
# Functionality to import modules/objects by name, and call functions by name
|
220 |
+
# ------------------------------------------------------------------------------------------
|
221 |
+
|
222 |
+
def get_module_from_obj_name(obj_name: str) -> Tuple[types.ModuleType, str]:
|
223 |
+
"""Searches for the underlying module behind the name to some python object.
|
224 |
+
Returns the module and the object name (original name with module part removed)."""
|
225 |
+
|
226 |
+
# allow convenience shorthands, substitute them by full names
|
227 |
+
obj_name = re.sub("^np.", "numpy.", obj_name)
|
228 |
+
obj_name = re.sub("^tf.", "tensorflow.", obj_name)
|
229 |
+
|
230 |
+
# list alternatives for (module_name, local_obj_name)
|
231 |
+
parts = obj_name.split(".")
|
232 |
+
name_pairs = [(".".join(parts[:i]), ".".join(parts[i:])) for i in range(len(parts), 0, -1)]
|
233 |
+
|
234 |
+
# try each alternative in turn
|
235 |
+
for module_name, local_obj_name in name_pairs:
|
236 |
+
try:
|
237 |
+
module = importlib.import_module(module_name) # may raise ImportError
|
238 |
+
get_obj_from_module(module, local_obj_name) # may raise AttributeError
|
239 |
+
return module, local_obj_name
|
240 |
+
except:
|
241 |
+
pass
|
242 |
+
|
243 |
+
# maybe some of the modules themselves contain errors?
|
244 |
+
for module_name, _local_obj_name in name_pairs:
|
245 |
+
try:
|
246 |
+
importlib.import_module(module_name) # may raise ImportError
|
247 |
+
except ImportError:
|
248 |
+
if not str(sys.exc_info()[1]).startswith("No module named '" + module_name + "'"):
|
249 |
+
raise
|
250 |
+
|
251 |
+
# maybe the requested attribute is missing?
|
252 |
+
for module_name, local_obj_name in name_pairs:
|
253 |
+
try:
|
254 |
+
module = importlib.import_module(module_name) # may raise ImportError
|
255 |
+
get_obj_from_module(module, local_obj_name) # may raise AttributeError
|
256 |
+
except ImportError:
|
257 |
+
pass
|
258 |
+
|
259 |
+
# we are out of luck, but we have no idea why
|
260 |
+
raise ImportError(obj_name)
|
261 |
+
|
262 |
+
|
263 |
+
def get_obj_from_module(module: types.ModuleType, obj_name: str) -> Any:
|
264 |
+
"""Traverses the object name and returns the last (rightmost) python object."""
|
265 |
+
if obj_name == '':
|
266 |
+
return module
|
267 |
+
obj = module
|
268 |
+
for part in obj_name.split("."):
|
269 |
+
obj = getattr(obj, part)
|
270 |
+
return obj
|
271 |
+
|
272 |
+
|
273 |
+
def get_obj_by_name(name: str) -> Any:
|
274 |
+
"""Finds the python object with the given name."""
|
275 |
+
module, obj_name = get_module_from_obj_name(name)
|
276 |
+
return get_obj_from_module(module, obj_name)
|
277 |
+
|
278 |
+
|
279 |
+
def call_func_by_name(*args, func_name: str = None, **kwargs) -> Any:
|
280 |
+
"""Finds the python object with the given name and calls it as a function."""
|
281 |
+
assert func_name is not None
|
282 |
+
func_obj = get_obj_by_name(func_name)
|
283 |
+
assert callable(func_obj)
|
284 |
+
return func_obj(*args, **kwargs)
|
285 |
+
|
286 |
+
|
287 |
+
def construct_class_by_name(*args, class_name: str = None, **kwargs) -> Any:
|
288 |
+
"""Finds the python class with the given name and constructs it with the given arguments."""
|
289 |
+
return call_func_by_name(*args, func_name=class_name, **kwargs)
|
290 |
+
|
291 |
+
|
292 |
+
def get_module_dir_by_obj_name(obj_name: str) -> str:
|
293 |
+
"""Get the directory path of the module containing the given object name."""
|
294 |
+
module, _ = get_module_from_obj_name(obj_name)
|
295 |
+
return os.path.dirname(inspect.getfile(module))
|
296 |
+
|
297 |
+
|
298 |
+
def is_top_level_function(obj: Any) -> bool:
|
299 |
+
"""Determine whether the given object is a top-level function, i.e., defined at module scope using 'def'."""
|
300 |
+
return callable(obj) and obj.__name__ in sys.modules[obj.__module__].__dict__
|
301 |
+
|
302 |
+
|
303 |
+
def get_top_level_function_name(obj: Any) -> str:
|
304 |
+
"""Return the fully-qualified name of a top-level function."""
|
305 |
+
assert is_top_level_function(obj)
|
306 |
+
module = obj.__module__
|
307 |
+
if module == '__main__':
|
308 |
+
module = os.path.splitext(os.path.basename(sys.modules[module].__file__))[0]
|
309 |
+
return module + "." + obj.__name__
|
310 |
+
|
311 |
+
|
312 |
+
# File system helpers
|
313 |
+
# ------------------------------------------------------------------------------------------
|
314 |
+
|
315 |
+
def list_dir_recursively_with_ignore(dir_path: str, ignores: List[str] = None, add_base_to_relative: bool = False) -> List[Tuple[str, str]]:
|
316 |
+
"""List all files recursively in a given directory while ignoring given file and directory names.
|
317 |
+
Returns list of tuples containing both absolute and relative paths."""
|
318 |
+
assert os.path.isdir(dir_path)
|
319 |
+
base_name = os.path.basename(os.path.normpath(dir_path))
|
320 |
+
|
321 |
+
if ignores is None:
|
322 |
+
ignores = []
|
323 |
+
|
324 |
+
result = []
|
325 |
+
|
326 |
+
for root, dirs, files in os.walk(dir_path, topdown=True):
|
327 |
+
for ignore_ in ignores:
|
328 |
+
dirs_to_remove = [d for d in dirs if fnmatch.fnmatch(d, ignore_)]
|
329 |
+
|
330 |
+
# dirs need to be edited in-place
|
331 |
+
for d in dirs_to_remove:
|
332 |
+
dirs.remove(d)
|
333 |
+
|
334 |
+
files = [f for f in files if not fnmatch.fnmatch(f, ignore_)]
|
335 |
+
|
336 |
+
absolute_paths = [os.path.join(root, f) for f in files]
|
337 |
+
relative_paths = [os.path.relpath(p, dir_path) for p in absolute_paths]
|
338 |
+
|
339 |
+
if add_base_to_relative:
|
340 |
+
relative_paths = [os.path.join(base_name, p) for p in relative_paths]
|
341 |
+
|
342 |
+
assert len(absolute_paths) == len(relative_paths)
|
343 |
+
result += zip(absolute_paths, relative_paths)
|
344 |
+
|
345 |
+
return result
|
346 |
+
|
347 |
+
|
348 |
+
def copy_files_and_create_dirs(files: List[Tuple[str, str]]) -> None:
|
349 |
+
"""Takes in a list of tuples of (src, dst) paths and copies files.
|
350 |
+
Will create all necessary directories."""
|
351 |
+
for file in files:
|
352 |
+
target_dir_name = os.path.dirname(file[1])
|
353 |
+
|
354 |
+
# will create all intermediate-level directories
|
355 |
+
if not os.path.exists(target_dir_name):
|
356 |
+
os.makedirs(target_dir_name)
|
357 |
+
|
358 |
+
shutil.copyfile(file[0], file[1])
|
359 |
+
|
360 |
+
|
361 |
+
# URL helpers
|
362 |
+
# ------------------------------------------------------------------------------------------
|
363 |
+
|
364 |
+
def is_url(obj: Any, allow_file_urls: bool = False) -> bool:
|
365 |
+
"""Determine whether the given object is a valid URL string."""
|
366 |
+
if not isinstance(obj, str) or not "://" in obj:
|
367 |
+
return False
|
368 |
+
if allow_file_urls and obj.startswith('file://'):
|
369 |
+
return True
|
370 |
+
try:
|
371 |
+
res = requests.compat.urlparse(obj)
|
372 |
+
if not res.scheme or not res.netloc or not "." in res.netloc:
|
373 |
+
return False
|
374 |
+
res = requests.compat.urlparse(requests.compat.urljoin(obj, "/"))
|
375 |
+
if not res.scheme or not res.netloc or not "." in res.netloc:
|
376 |
+
return False
|
377 |
+
except:
|
378 |
+
return False
|
379 |
+
return True
|
380 |
+
|
381 |
+
|
382 |
+
def open_url(url: str, cache_dir: str = None, num_attempts: int = 10, verbose: bool = True, return_filename: bool = False, cache: bool = True) -> Any:
|
383 |
+
"""Download the given URL and return a binary-mode file object to access the data."""
|
384 |
+
assert num_attempts >= 1
|
385 |
+
assert not (return_filename and (not cache))
|
386 |
+
|
387 |
+
# Doesn't look like an URL scheme so interpret it as a local filename.
|
388 |
+
if not re.match('^[a-z]+://', url):
|
389 |
+
return url if return_filename else open(url, "rb")
|
390 |
+
|
391 |
+
# Handle file URLs. This code handles unusual file:// patterns that
|
392 |
+
# arise on Windows:
|
393 |
+
#
|
394 |
+
# file:///c:/foo.txt
|
395 |
+
#
|
396 |
+
# which would translate to a local '/c:/foo.txt' filename that's
|
397 |
+
# invalid. Drop the forward slash for such pathnames.
|
398 |
+
#
|
399 |
+
# If you touch this code path, you should test it on both Linux and
|
400 |
+
# Windows.
|
401 |
+
#
|
402 |
+
# Some internet resources suggest using urllib.request.url2pathname() but
|
403 |
+
# but that converts forward slashes to backslashes and this causes
|
404 |
+
# its own set of problems.
|
405 |
+
if url.startswith('file://'):
|
406 |
+
filename = urllib.parse.urlparse(url).path
|
407 |
+
if re.match(r'^/[a-zA-Z]:', filename):
|
408 |
+
filename = filename[1:]
|
409 |
+
return filename if return_filename else open(filename, "rb")
|
410 |
+
|
411 |
+
assert is_url(url)
|
412 |
+
|
413 |
+
# Lookup from cache.
|
414 |
+
if cache_dir is None:
|
415 |
+
cache_dir = make_cache_dir_path('downloads')
|
416 |
+
|
417 |
+
url_md5 = hashlib.md5(url.encode("utf-8")).hexdigest()
|
418 |
+
if cache:
|
419 |
+
cache_files = glob.glob(os.path.join(cache_dir, url_md5 + "_*"))
|
420 |
+
if len(cache_files) == 1:
|
421 |
+
filename = cache_files[0]
|
422 |
+
return filename if return_filename else open(filename, "rb")
|
423 |
+
|
424 |
+
# Download.
|
425 |
+
url_name = None
|
426 |
+
url_data = None
|
427 |
+
with requests.Session() as session:
|
428 |
+
if verbose:
|
429 |
+
print("Downloading %s ..." % url, end="", flush=True)
|
430 |
+
for attempts_left in reversed(range(num_attempts)):
|
431 |
+
try:
|
432 |
+
with session.get(url) as res:
|
433 |
+
res.raise_for_status()
|
434 |
+
if len(res.content) == 0:
|
435 |
+
raise IOError("No data received")
|
436 |
+
|
437 |
+
if len(res.content) < 8192:
|
438 |
+
content_str = res.content.decode("utf-8")
|
439 |
+
if "download_warning" in res.headers.get("Set-Cookie", ""):
|
440 |
+
links = [html.unescape(link) for link in content_str.split('"') if "export=download" in link]
|
441 |
+
if len(links) == 1:
|
442 |
+
url = requests.compat.urljoin(url, links[0])
|
443 |
+
raise IOError("Google Drive virus checker nag")
|
444 |
+
if "Google Drive - Quota exceeded" in content_str:
|
445 |
+
raise IOError("Google Drive download quota exceeded -- please try again later")
|
446 |
+
|
447 |
+
match = re.search(r'filename="([^"]*)"', res.headers.get("Content-Disposition", ""))
|
448 |
+
url_name = match[1] if match else url
|
449 |
+
url_data = res.content
|
450 |
+
if verbose:
|
451 |
+
print(" done")
|
452 |
+
break
|
453 |
+
except KeyboardInterrupt:
|
454 |
+
raise
|
455 |
+
except:
|
456 |
+
if not attempts_left:
|
457 |
+
if verbose:
|
458 |
+
print(" failed")
|
459 |
+
raise
|
460 |
+
if verbose:
|
461 |
+
print(".", end="", flush=True)
|
462 |
+
|
463 |
+
# Save to cache.
|
464 |
+
if cache:
|
465 |
+
safe_name = re.sub(r"[^0-9a-zA-Z-._]", "_", url_name)
|
466 |
+
cache_file = os.path.join(cache_dir, url_md5 + "_" + safe_name)
|
467 |
+
temp_file = os.path.join(cache_dir, "tmp_" + uuid.uuid4().hex + "_" + url_md5 + "_" + safe_name)
|
468 |
+
os.makedirs(cache_dir, exist_ok=True)
|
469 |
+
with open(temp_file, "wb") as f:
|
470 |
+
f.write(url_data)
|
471 |
+
os.replace(temp_file, cache_file) # atomic
|
472 |
+
if return_filename:
|
473 |
+
return cache_file
|
474 |
+
|
475 |
+
# Return data as file object.
|
476 |
+
assert not return_filename
|
477 |
+
return io.BytesIO(url_data)
|
PTI/models/StyleCLIP/__init__.py
ADDED
File without changes
|
PTI/models/StyleCLIP/criteria/__init__.py
ADDED
File without changes
|
PTI/models/StyleCLIP/criteria/clip_loss.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
import clip
|
4 |
+
|
5 |
+
|
6 |
+
class CLIPLoss(torch.nn.Module):
|
7 |
+
|
8 |
+
def __init__(self, opts):
|
9 |
+
super(CLIPLoss, self).__init__()
|
10 |
+
self.model, self.preprocess = clip.load("ViT-B/32", device="cuda")
|
11 |
+
self.upsample = torch.nn.Upsample(scale_factor=7)
|
12 |
+
self.avg_pool = torch.nn.AvgPool2d(kernel_size=opts.stylegan_size // 32)
|
13 |
+
|
14 |
+
def forward(self, image, text):
|
15 |
+
image = self.avg_pool(self.upsample(image))
|
16 |
+
similarity = 1 - self.model(image, text)[0] / 100
|
17 |
+
return similarity
|
PTI/models/StyleCLIP/criteria/id_loss.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
from models.facial_recognition.model_irse import Backbone
|
5 |
+
|
6 |
+
|
7 |
+
class IDLoss(nn.Module):
|
8 |
+
def __init__(self, opts):
|
9 |
+
super(IDLoss, self).__init__()
|
10 |
+
print('Loading ResNet ArcFace')
|
11 |
+
self.facenet = Backbone(input_size=112, num_layers=50, drop_ratio=0.6, mode='ir_se')
|
12 |
+
self.facenet.load_state_dict(torch.load(opts.ir_se50_weights))
|
13 |
+
self.pool = torch.nn.AdaptiveAvgPool2d((256, 256))
|
14 |
+
self.face_pool = torch.nn.AdaptiveAvgPool2d((112, 112))
|
15 |
+
self.facenet.eval()
|
16 |
+
self.opts = opts
|
17 |
+
|
18 |
+
def extract_feats(self, x):
|
19 |
+
if x.shape[2] != 256:
|
20 |
+
x = self.pool(x)
|
21 |
+
x = x[:, :, 35:223, 32:220] # Crop interesting region
|
22 |
+
x = self.face_pool(x)
|
23 |
+
x_feats = self.facenet(x)
|
24 |
+
return x_feats
|
25 |
+
|
26 |
+
def forward(self, y_hat, y):
|
27 |
+
n_samples = y.shape[0]
|
28 |
+
y_feats = self.extract_feats(y) # Otherwise use the feature from there
|
29 |
+
y_hat_feats = self.extract_feats(y_hat)
|
30 |
+
y_feats = y_feats.detach()
|
31 |
+
loss = 0
|
32 |
+
sim_improvement = 0
|
33 |
+
count = 0
|
34 |
+
for i in range(n_samples):
|
35 |
+
diff_target = y_hat_feats[i].dot(y_feats[i])
|
36 |
+
loss += 1 - diff_target
|
37 |
+
count += 1
|
38 |
+
|
39 |
+
return loss / count, sim_improvement / count
|
PTI/models/StyleCLIP/global_directions/GUI.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
from tkinter import Tk,Frame ,Label,Button,messagebox,Canvas,Text,Scale
|
4 |
+
from tkinter import HORIZONTAL
|
5 |
+
|
6 |
+
class View():
|
7 |
+
def __init__(self,master):
|
8 |
+
|
9 |
+
self.width=600
|
10 |
+
self.height=600
|
11 |
+
|
12 |
+
|
13 |
+
self.root=master
|
14 |
+
self.root.geometry("600x600")
|
15 |
+
|
16 |
+
self.left_frame=Frame(self.root,width=600)
|
17 |
+
self.left_frame.pack_propagate(0)
|
18 |
+
self.left_frame.pack(fill='both', side='left', expand='True')
|
19 |
+
|
20 |
+
self.retrieval_frame=Frame(self.root,bg='snow3')
|
21 |
+
self.retrieval_frame.pack_propagate(0)
|
22 |
+
self.retrieval_frame.pack(fill='both', side='right', expand='True')
|
23 |
+
|
24 |
+
self.bg_frame=Frame(self.left_frame,bg='snow3',height=600,width=600)
|
25 |
+
self.bg_frame.pack_propagate(0)
|
26 |
+
self.bg_frame.pack(fill='both', side='top', expand='True')
|
27 |
+
|
28 |
+
self.command_frame=Frame(self.left_frame,bg='snow3')
|
29 |
+
self.command_frame.pack_propagate(0)
|
30 |
+
self.command_frame.pack(fill='both', side='bottom', expand='True')
|
31 |
+
# self.command_frame.grid(row=1, column=0,padx=0, pady=0)
|
32 |
+
|
33 |
+
self.bg=Canvas(self.bg_frame,width=self.width,height=self.height, bg='gray')
|
34 |
+
self.bg.place(relx=0.5, rely=0.5, anchor='center')
|
35 |
+
|
36 |
+
self.mani=Canvas(self.retrieval_frame,width=1024,height=1024, bg='gray')
|
37 |
+
self.mani.grid(row=0, column=0,padx=0, pady=42)
|
38 |
+
|
39 |
+
self.SetCommand()
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
def run(self):
|
45 |
+
self.root.mainloop()
|
46 |
+
|
47 |
+
def helloCallBack(self):
|
48 |
+
category=self.set_category.get()
|
49 |
+
messagebox.showinfo( "Hello Python",category)
|
50 |
+
|
51 |
+
def SetCommand(self):
|
52 |
+
|
53 |
+
tmp = Label(self.command_frame, text="neutral", width=10 ,bg='snow3')
|
54 |
+
tmp.grid(row=1, column=0,padx=10, pady=10)
|
55 |
+
|
56 |
+
tmp = Label(self.command_frame, text="a photo of a", width=10 ,bg='snow3')
|
57 |
+
tmp.grid(row=1, column=1,padx=10, pady=10)
|
58 |
+
|
59 |
+
self.neutral = Text ( self.command_frame, height=2, width=30)
|
60 |
+
self.neutral.grid(row=1, column=2,padx=10, pady=10)
|
61 |
+
|
62 |
+
|
63 |
+
tmp = Label(self.command_frame, text="target", width=10 ,bg='snow3')
|
64 |
+
tmp.grid(row=2, column=0,padx=10, pady=10)
|
65 |
+
|
66 |
+
tmp = Label(self.command_frame, text="a photo of a", width=10 ,bg='snow3')
|
67 |
+
tmp.grid(row=2, column=1,padx=10, pady=10)
|
68 |
+
|
69 |
+
self.target = Text ( self.command_frame, height=2, width=30)
|
70 |
+
self.target.grid(row=2, column=2,padx=10, pady=10)
|
71 |
+
|
72 |
+
tmp = Label(self.command_frame, text="strength", width=10 ,bg='snow3')
|
73 |
+
tmp.grid(row=3, column=0,padx=10, pady=10)
|
74 |
+
|
75 |
+
self.alpha = Scale(self.command_frame, from_=-15, to=25, orient=HORIZONTAL,bg='snow3', length=250,resolution=0.01)
|
76 |
+
self.alpha.grid(row=3, column=2,padx=10, pady=10)
|
77 |
+
|
78 |
+
|
79 |
+
tmp = Label(self.command_frame, text="disentangle", width=10 ,bg='snow3')
|
80 |
+
tmp.grid(row=4, column=0,padx=10, pady=10)
|
81 |
+
|
82 |
+
self.beta = Scale(self.command_frame, from_=0.08, to=0.4, orient=HORIZONTAL,bg='snow3', length=250,resolution=0.001)
|
83 |
+
self.beta.grid(row=4, column=2,padx=10, pady=10)
|
84 |
+
|
85 |
+
self.reset = Button(self.command_frame, text='Reset')
|
86 |
+
self.reset.grid(row=5, column=1,padx=10, pady=10)
|
87 |
+
|
88 |
+
|
89 |
+
self.set_init = Button(self.command_frame, text='Accept')
|
90 |
+
self.set_init.grid(row=5, column=2,padx=10, pady=10)
|
91 |
+
|
92 |
+
#%%
|
93 |
+
if __name__ == "__main__":
|
94 |
+
master=Tk()
|
95 |
+
self=View(master)
|
96 |
+
self.run()
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
|
PTI/models/StyleCLIP/global_directions/GenerateImg.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import os
|
3 |
+
import numpy as np
|
4 |
+
import argparse
|
5 |
+
from manipulate import Manipulator
|
6 |
+
|
7 |
+
from PIL import Image
|
8 |
+
#%%
|
9 |
+
|
10 |
+
if __name__ == "__main__":
|
11 |
+
parser = argparse.ArgumentParser(description='Process some integers.')
|
12 |
+
|
13 |
+
parser.add_argument('--dataset_name',type=str,default='ffhq',
|
14 |
+
help='name of dataset, for example, ffhq')
|
15 |
+
|
16 |
+
args = parser.parse_args()
|
17 |
+
dataset_name=args.dataset_name
|
18 |
+
|
19 |
+
if not os.path.isdir('./data/'+dataset_name):
|
20 |
+
os.system('mkdir ./data/'+dataset_name)
|
21 |
+
#%%
|
22 |
+
M=Manipulator(dataset_name=dataset_name)
|
23 |
+
np.set_printoptions(suppress=True)
|
24 |
+
print(M.dataset_name)
|
25 |
+
#%%
|
26 |
+
|
27 |
+
M.img_index=0
|
28 |
+
M.num_images=50
|
29 |
+
M.alpha=[0]
|
30 |
+
M.step=1
|
31 |
+
lindex,bname=0,0
|
32 |
+
|
33 |
+
M.manipulate_layers=[lindex]
|
34 |
+
codes,out=M.EditOneC(bname)
|
35 |
+
#%%
|
36 |
+
|
37 |
+
for i in range(len(out)):
|
38 |
+
img=out[i,0]
|
39 |
+
img=Image.fromarray(img)
|
40 |
+
img.save('./data/'+dataset_name+'/'+str(i)+'.jpg')
|
41 |
+
#%%
|
42 |
+
w=np.load('./npy/'+dataset_name+'/W.npy')
|
43 |
+
|
44 |
+
tmp=w[:M.num_images]
|
45 |
+
tmp=tmp[:,None,:]
|
46 |
+
tmp=np.tile(tmp,(1,M.Gs.components.synthesis.input_shape[1],1))
|
47 |
+
|
48 |
+
np.save('./data/'+dataset_name+'/w_plus.npy',tmp)
|
49 |
+
|
50 |
+
|
PTI/models/StyleCLIP/global_directions/GetCode.py
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
|
4 |
+
import os
|
5 |
+
import pickle
|
6 |
+
import numpy as np
|
7 |
+
from dnnlib import tflib
|
8 |
+
import tensorflow as tf
|
9 |
+
|
10 |
+
import argparse
|
11 |
+
|
12 |
+
def LoadModel(dataset_name):
|
13 |
+
# Initialize TensorFlow.
|
14 |
+
tflib.init_tf()
|
15 |
+
model_path='./model/'
|
16 |
+
model_name=dataset_name+'.pkl'
|
17 |
+
|
18 |
+
tmp=os.path.join(model_path,model_name)
|
19 |
+
with open(tmp, 'rb') as f:
|
20 |
+
_, _, Gs = pickle.load(f)
|
21 |
+
return Gs
|
22 |
+
|
23 |
+
def lerp(a,b,t):
|
24 |
+
return a + (b - a) * t
|
25 |
+
|
26 |
+
#stylegan-ada
|
27 |
+
def SelectName(layer_name,suffix):
|
28 |
+
if suffix==None:
|
29 |
+
tmp1='add:0' in layer_name
|
30 |
+
tmp2='shape=(?,' in layer_name
|
31 |
+
tmp4='G_synthesis_1' in layer_name
|
32 |
+
tmp= tmp1 and tmp2 and tmp4
|
33 |
+
else:
|
34 |
+
tmp1=('/Conv0_up'+suffix) in layer_name
|
35 |
+
tmp2=('/Conv1'+suffix) in layer_name
|
36 |
+
tmp3=('4x4/Conv'+suffix) in layer_name
|
37 |
+
tmp4='G_synthesis_1' in layer_name
|
38 |
+
tmp5=('/ToRGB'+suffix) in layer_name
|
39 |
+
tmp= (tmp1 or tmp2 or tmp3 or tmp5) and tmp4
|
40 |
+
return tmp
|
41 |
+
|
42 |
+
|
43 |
+
def GetSNames(suffix):
|
44 |
+
#get style tensor name
|
45 |
+
with tf.Session() as sess:
|
46 |
+
op = sess.graph.get_operations()
|
47 |
+
layers=[m.values() for m in op]
|
48 |
+
|
49 |
+
|
50 |
+
select_layers=[]
|
51 |
+
for layer in layers:
|
52 |
+
layer_name=str(layer)
|
53 |
+
if SelectName(layer_name,suffix):
|
54 |
+
select_layers.append(layer[0])
|
55 |
+
return select_layers
|
56 |
+
|
57 |
+
def SelectName2(layer_name):
|
58 |
+
tmp1='mod_bias' in layer_name
|
59 |
+
tmp2='mod_weight' in layer_name
|
60 |
+
tmp3='ToRGB' in layer_name
|
61 |
+
|
62 |
+
tmp= (tmp1 or tmp2) and (not tmp3)
|
63 |
+
return tmp
|
64 |
+
|
65 |
+
def GetKName(Gs):
|
66 |
+
|
67 |
+
layers=[var for name, var in Gs.components.synthesis.vars.items()]
|
68 |
+
|
69 |
+
select_layers=[]
|
70 |
+
for layer in layers:
|
71 |
+
layer_name=str(layer)
|
72 |
+
if SelectName2(layer_name):
|
73 |
+
select_layers.append(layer)
|
74 |
+
return select_layers
|
75 |
+
|
76 |
+
def GetCode(Gs,random_state,num_img,num_once,dataset_name):
|
77 |
+
rnd = np.random.RandomState(random_state) #5
|
78 |
+
|
79 |
+
truncation_psi=0.7
|
80 |
+
truncation_cutoff=8
|
81 |
+
|
82 |
+
dlatent_avg=Gs.get_var('dlatent_avg')
|
83 |
+
|
84 |
+
dlatents=np.zeros((num_img,512),dtype='float32')
|
85 |
+
for i in range(int(num_img/num_once)):
|
86 |
+
src_latents = rnd.randn(num_once, Gs.input_shape[1])
|
87 |
+
src_dlatents = Gs.components.mapping.run(src_latents, None) # [seed, layer, component]
|
88 |
+
|
89 |
+
# Apply truncation trick.
|
90 |
+
if truncation_psi is not None and truncation_cutoff is not None:
|
91 |
+
layer_idx = np.arange(src_dlatents.shape[1])[np.newaxis, :, np.newaxis]
|
92 |
+
ones = np.ones(layer_idx.shape, dtype=np.float32)
|
93 |
+
coefs = np.where(layer_idx < truncation_cutoff, truncation_psi * ones, ones)
|
94 |
+
src_dlatents_np=lerp(dlatent_avg, src_dlatents, coefs)
|
95 |
+
src_dlatents=src_dlatents_np[:,0,:].astype('float32')
|
96 |
+
dlatents[(i*num_once):((i+1)*num_once),:]=src_dlatents
|
97 |
+
print('get all z and w')
|
98 |
+
|
99 |
+
tmp='./npy/'+dataset_name+'/W'
|
100 |
+
np.save(tmp,dlatents)
|
101 |
+
|
102 |
+
|
103 |
+
def GetImg(Gs,num_img,num_once,dataset_name,save_name='images'):
|
104 |
+
print('Generate Image')
|
105 |
+
tmp='./npy/'+dataset_name+'/W.npy'
|
106 |
+
dlatents=np.load(tmp)
|
107 |
+
fmt = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)
|
108 |
+
|
109 |
+
all_images=[]
|
110 |
+
for i in range(int(num_img/num_once)):
|
111 |
+
print(i)
|
112 |
+
images=[]
|
113 |
+
for k in range(num_once):
|
114 |
+
tmp=dlatents[i*num_once+k]
|
115 |
+
tmp=tmp[None,None,:]
|
116 |
+
tmp=np.tile(tmp,(1,Gs.components.synthesis.input_shape[1],1))
|
117 |
+
image2= Gs.components.synthesis.run(tmp, randomize_noise=False, output_transform=fmt)
|
118 |
+
images.append(image2)
|
119 |
+
|
120 |
+
images=np.concatenate(images)
|
121 |
+
|
122 |
+
all_images.append(images)
|
123 |
+
|
124 |
+
all_images=np.concatenate(all_images)
|
125 |
+
|
126 |
+
tmp='./npy/'+dataset_name+'/'+save_name
|
127 |
+
np.save(tmp,all_images)
|
128 |
+
|
129 |
+
def GetS(dataset_name,num_img):
|
130 |
+
print('Generate S')
|
131 |
+
tmp='./npy/'+dataset_name+'/W.npy'
|
132 |
+
dlatents=np.load(tmp)[:num_img]
|
133 |
+
|
134 |
+
with tf.Session() as sess:
|
135 |
+
init = tf.global_variables_initializer()
|
136 |
+
sess.run(init)
|
137 |
+
|
138 |
+
Gs=LoadModel(dataset_name)
|
139 |
+
Gs.print_layers() #for ada
|
140 |
+
select_layers1=GetSNames(suffix=None) #None,'/mul_1:0','/mod_weight/read:0','/MatMul:0'
|
141 |
+
dlatents=dlatents[:,None,:]
|
142 |
+
dlatents=np.tile(dlatents,(1,Gs.components.synthesis.input_shape[1],1))
|
143 |
+
|
144 |
+
all_s = sess.run(
|
145 |
+
select_layers1,
|
146 |
+
feed_dict={'G_synthesis_1/dlatents_in:0': dlatents})
|
147 |
+
|
148 |
+
layer_names=[layer.name for layer in select_layers1]
|
149 |
+
save_tmp=[layer_names,all_s]
|
150 |
+
return save_tmp
|
151 |
+
|
152 |
+
|
153 |
+
|
154 |
+
|
155 |
+
def convert_images_to_uint8(images, drange=[-1,1], nchw_to_nhwc=False):
|
156 |
+
"""Convert a minibatch of images from float32 to uint8 with configurable dynamic range.
|
157 |
+
Can be used as an output transformation for Network.run().
|
158 |
+
"""
|
159 |
+
if nchw_to_nhwc:
|
160 |
+
images = np.transpose(images, [0, 2, 3, 1])
|
161 |
+
|
162 |
+
scale = 255 / (drange[1] - drange[0])
|
163 |
+
images = images * scale + (0.5 - drange[0] * scale)
|
164 |
+
|
165 |
+
np.clip(images, 0, 255, out=images)
|
166 |
+
images=images.astype('uint8')
|
167 |
+
return images
|
168 |
+
|
169 |
+
|
170 |
+
def GetCodeMS(dlatents):
|
171 |
+
m=[]
|
172 |
+
std=[]
|
173 |
+
for i in range(len(dlatents)):
|
174 |
+
tmp= dlatents[i]
|
175 |
+
tmp_mean=tmp.mean(axis=0)
|
176 |
+
tmp_std=tmp.std(axis=0)
|
177 |
+
m.append(tmp_mean)
|
178 |
+
std.append(tmp_std)
|
179 |
+
return m,std
|
180 |
+
|
181 |
+
|
182 |
+
|
183 |
+
#%%
|
184 |
+
if __name__ == "__main__":
|
185 |
+
|
186 |
+
|
187 |
+
parser = argparse.ArgumentParser(description='Process some integers.')
|
188 |
+
|
189 |
+
parser.add_argument('--dataset_name',type=str,default='ffhq',
|
190 |
+
help='name of dataset, for example, ffhq')
|
191 |
+
parser.add_argument('--code_type',choices=['w','s','s_mean_std'],default='w')
|
192 |
+
|
193 |
+
args = parser.parse_args()
|
194 |
+
random_state=5
|
195 |
+
num_img=100_000
|
196 |
+
num_once=1_000
|
197 |
+
dataset_name=args.dataset_name
|
198 |
+
|
199 |
+
if not os.path.isfile('./model/'+dataset_name+'.pkl'):
|
200 |
+
url='https://nvlabs-fi-cdn.nvidia.com/stylegan2/networks/'
|
201 |
+
name='stylegan2-'+dataset_name+'-config-f.pkl'
|
202 |
+
os.system('wget ' +url+name + ' -P ./model/')
|
203 |
+
os.system('mv ./model/'+name+' ./model/'+dataset_name+'.pkl')
|
204 |
+
|
205 |
+
if not os.path.isdir('./npy/'+dataset_name):
|
206 |
+
os.system('mkdir ./npy/'+dataset_name)
|
207 |
+
|
208 |
+
if args.code_type=='w':
|
209 |
+
Gs=LoadModel(dataset_name=dataset_name)
|
210 |
+
GetCode(Gs,random_state,num_img,num_once,dataset_name)
|
211 |
+
# GetImg(Gs,num_img=num_img,num_once=num_once,dataset_name=dataset_name,save_name='images_100K') #no need
|
212 |
+
elif args.code_type=='s':
|
213 |
+
save_name='S'
|
214 |
+
save_tmp=GetS(dataset_name,num_img=2_000)
|
215 |
+
tmp='./npy/'+dataset_name+'/'+save_name
|
216 |
+
with open(tmp, "wb") as fp:
|
217 |
+
pickle.dump(save_tmp, fp)
|
218 |
+
|
219 |
+
elif args.code_type=='s_mean_std':
|
220 |
+
save_tmp=GetS(dataset_name,num_img=num_img)
|
221 |
+
dlatents=save_tmp[1]
|
222 |
+
m,std=GetCodeMS(dlatents)
|
223 |
+
save_tmp=[m,std]
|
224 |
+
save_name='S_mean_std'
|
225 |
+
tmp='./npy/'+dataset_name+'/'+save_name
|
226 |
+
with open(tmp, "wb") as fp:
|
227 |
+
pickle.dump(save_tmp, fp)
|
228 |
+
|
229 |
+
|
230 |
+
|
231 |
+
|
232 |
+
|
PTI/models/StyleCLIP/global_directions/GetGUIData.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import os
|
3 |
+
import numpy as np
|
4 |
+
import argparse
|
5 |
+
from manipulate import Manipulator
|
6 |
+
import torch
|
7 |
+
from PIL import Image
|
8 |
+
#%%
|
9 |
+
|
10 |
+
if __name__ == "__main__":
|
11 |
+
parser = argparse.ArgumentParser(description='Process some integers.')
|
12 |
+
|
13 |
+
parser.add_argument('--dataset_name',type=str,default='ffhq',
|
14 |
+
help='name of dataset, for example, ffhq')
|
15 |
+
|
16 |
+
parser.add_argument('--real', action='store_true')
|
17 |
+
|
18 |
+
args = parser.parse_args()
|
19 |
+
dataset_name=args.dataset_name
|
20 |
+
|
21 |
+
if not os.path.isdir('./data/'+dataset_name):
|
22 |
+
os.system('mkdir ./data/'+dataset_name)
|
23 |
+
#%%
|
24 |
+
M=Manipulator(dataset_name=dataset_name)
|
25 |
+
np.set_printoptions(suppress=True)
|
26 |
+
print(M.dataset_name)
|
27 |
+
#%%
|
28 |
+
#remove all .jpg
|
29 |
+
names=os.listdir('./data/'+dataset_name+'/')
|
30 |
+
for name in names:
|
31 |
+
if '.jpg' in name:
|
32 |
+
os.system('rm ./data/'+dataset_name+'/'+name)
|
33 |
+
|
34 |
+
|
35 |
+
#%%
|
36 |
+
if args.real:
|
37 |
+
latents=torch.load('./data/'+dataset_name+'/latents.pt')
|
38 |
+
w_plus=latents.cpu().detach().numpy()
|
39 |
+
else:
|
40 |
+
w=np.load('./npy/'+dataset_name+'/W.npy')
|
41 |
+
tmp=w[:50] #only use 50 images
|
42 |
+
tmp=tmp[:,None,:]
|
43 |
+
w_plus=np.tile(tmp,(1,M.Gs.components.synthesis.input_shape[1],1))
|
44 |
+
np.save('./data/'+dataset_name+'/w_plus.npy',w_plus)
|
45 |
+
|
46 |
+
#%%
|
47 |
+
tmp=M.W2S(w_plus)
|
48 |
+
M.dlatents=tmp
|
49 |
+
|
50 |
+
M.img_index=0
|
51 |
+
M.num_images=len(w_plus)
|
52 |
+
M.alpha=[0]
|
53 |
+
M.step=1
|
54 |
+
lindex,bname=0,0
|
55 |
+
|
56 |
+
M.manipulate_layers=[lindex]
|
57 |
+
codes,out=M.EditOneC(bname)
|
58 |
+
#%%
|
59 |
+
|
60 |
+
for i in range(len(out)):
|
61 |
+
img=out[i,0]
|
62 |
+
img=Image.fromarray(img)
|
63 |
+
img.save('./data/'+dataset_name+'/'+str(i)+'.jpg')
|
64 |
+
#%%
|
65 |
+
|
66 |
+
|
67 |
+
|
PTI/models/StyleCLIP/global_directions/Inference.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
from manipulate import Manipulator
|
4 |
+
import tensorflow as tf
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import clip
|
8 |
+
from MapTS import GetBoundary,GetDt
|
9 |
+
|
10 |
+
class StyleCLIP():
|
11 |
+
|
12 |
+
def __init__(self,dataset_name='ffhq'):
|
13 |
+
print('load clip')
|
14 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
+
self.model, preprocess = clip.load("ViT-B/32", device=device)
|
16 |
+
self.LoadData(dataset_name)
|
17 |
+
|
18 |
+
def LoadData(self, dataset_name):
|
19 |
+
tf.keras.backend.clear_session()
|
20 |
+
M=Manipulator(dataset_name=dataset_name)
|
21 |
+
np.set_printoptions(suppress=True)
|
22 |
+
fs3=np.load('./npy/'+dataset_name+'/fs3.npy')
|
23 |
+
|
24 |
+
self.M=M
|
25 |
+
self.fs3=fs3
|
26 |
+
|
27 |
+
w_plus=np.load('./data/'+dataset_name+'/w_plus.npy')
|
28 |
+
self.M.dlatents=M.W2S(w_plus)
|
29 |
+
|
30 |
+
if dataset_name=='ffhq':
|
31 |
+
self.c_threshold=20
|
32 |
+
else:
|
33 |
+
self.c_threshold=100
|
34 |
+
self.SetInitP()
|
35 |
+
|
36 |
+
def SetInitP(self):
|
37 |
+
self.M.alpha=[3]
|
38 |
+
self.M.num_images=1
|
39 |
+
|
40 |
+
self.target=''
|
41 |
+
self.neutral=''
|
42 |
+
self.GetDt2()
|
43 |
+
img_index=0
|
44 |
+
self.M.dlatent_tmp=[tmp[img_index:(img_index+1)] for tmp in self.M.dlatents]
|
45 |
+
|
46 |
+
|
47 |
+
def GetDt2(self):
|
48 |
+
classnames=[self.target,self.neutral]
|
49 |
+
dt=GetDt(classnames,self.model)
|
50 |
+
|
51 |
+
self.dt=dt
|
52 |
+
num_cs=[]
|
53 |
+
betas=np.arange(0.1,0.3,0.01)
|
54 |
+
for i in range(len(betas)):
|
55 |
+
boundary_tmp2,num_c=GetBoundary(self.fs3,self.dt,self.M,threshold=betas[i])
|
56 |
+
print(betas[i])
|
57 |
+
num_cs.append(num_c)
|
58 |
+
|
59 |
+
num_cs=np.array(num_cs)
|
60 |
+
select=num_cs>self.c_threshold
|
61 |
+
|
62 |
+
if sum(select)==0:
|
63 |
+
self.beta=0.1
|
64 |
+
else:
|
65 |
+
self.beta=betas[select][-1]
|
66 |
+
|
67 |
+
|
68 |
+
def GetCode(self):
|
69 |
+
boundary_tmp2,num_c=GetBoundary(self.fs3,self.dt,self.M,threshold=self.beta)
|
70 |
+
codes=self.M.MSCode(self.M.dlatent_tmp,boundary_tmp2)
|
71 |
+
return codes
|
72 |
+
|
73 |
+
def GetImg(self):
|
74 |
+
|
75 |
+
codes=self.GetCode()
|
76 |
+
out=self.M.GenerateImg(codes)
|
77 |
+
img=out[0,0]
|
78 |
+
return img
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
#%%
|
84 |
+
if __name__ == "__main__":
|
85 |
+
style_clip=StyleCLIP()
|
86 |
+
self=style_clip
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
|
PTI/models/StyleCLIP/global_directions/MapTS.py
ADDED
@@ -0,0 +1,394 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
"""
|
4 |
+
Created on Thu Feb 4 17:36:31 2021
|
5 |
+
|
6 |
+
@author: wuzongze
|
7 |
+
"""
|
8 |
+
|
9 |
+
import os
|
10 |
+
#os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
11 |
+
#os.environ["CUDA_VISIBLE_DEVICES"] = "1" #(or "1" or "2")
|
12 |
+
|
13 |
+
import sys
|
14 |
+
|
15 |
+
#sys.path=['', '/usr/local/tensorflow/avx-avx2-gpu/1.14.0/python3.7/site-packages', '/usr/local/matlab/2018b/lib/python3.7/site-packages', '/cs/labs/danix/wuzongze/pythonV/venv3.7/lib/python37.zip', '/cs/labs/danix/wuzongze/pythonV/venv3.7/lib/python3.7', '/cs/labs/danix/wuzongze/pythonV/venv3.7/lib/python3.7/lib-dynload', '/usr/lib/python3.7', '/cs/labs/danix/wuzongze/pythonV/venv3.7/lib/python3.7/site-packages', '/cs/labs/danix/wuzongze/pythonV/venv3.7/lib/python3.7/site-packages/copkmeans-1.5-py3.7.egg', '/cs/labs/danix/wuzongze/pythonV/venv3.7/lib/python3.7/site-packages/spherecluster-0.1.7-py3.7.egg', '/usr/lib/python3/dist-packages', '/usr/local/lib/python3.7/dist-packages', '/usr/lib/python3/dist-packages/IPython/extensions']
|
16 |
+
|
17 |
+
import tensorflow as tf
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
import torch
|
21 |
+
import clip
|
22 |
+
from PIL import Image
|
23 |
+
import pickle
|
24 |
+
import copy
|
25 |
+
import matplotlib.pyplot as plt
|
26 |
+
|
27 |
+
def GetAlign(out,dt,model,preprocess):
|
28 |
+
imgs=out
|
29 |
+
imgs1=imgs.reshape([-1]+list(imgs.shape[2:]))
|
30 |
+
|
31 |
+
tmp=[]
|
32 |
+
for i in range(len(imgs1)):
|
33 |
+
|
34 |
+
img=Image.fromarray(imgs1[i])
|
35 |
+
image = preprocess(img).unsqueeze(0).to(device)
|
36 |
+
tmp.append(image)
|
37 |
+
|
38 |
+
image=torch.cat(tmp)
|
39 |
+
|
40 |
+
with torch.no_grad():
|
41 |
+
image_features = model.encode_image(image)
|
42 |
+
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
|
43 |
+
|
44 |
+
image_features1=image_features.cpu().numpy()
|
45 |
+
|
46 |
+
image_features1=image_features1.reshape(list(imgs.shape[:2])+[512])
|
47 |
+
|
48 |
+
fd=image_features1[:,1:,:]-image_features1[:,:-1,:]
|
49 |
+
|
50 |
+
fd1=fd.reshape([-1,512])
|
51 |
+
fd2=fd1/np.linalg.norm(fd1,axis=1)[:,None]
|
52 |
+
|
53 |
+
tmp=np.dot(fd2,dt)
|
54 |
+
m=tmp.mean()
|
55 |
+
acc=np.sum(tmp>0)/len(tmp)
|
56 |
+
print(m,acc)
|
57 |
+
return m,acc
|
58 |
+
|
59 |
+
|
60 |
+
def SplitS(ds_p,M,if_std):
|
61 |
+
all_ds=[]
|
62 |
+
start=0
|
63 |
+
for i in M.mindexs:
|
64 |
+
tmp=M.dlatents[i].shape[1]
|
65 |
+
end=start+tmp
|
66 |
+
tmp=ds_p[start:end]
|
67 |
+
# tmp=tmp*M.code_std[i]
|
68 |
+
|
69 |
+
all_ds.append(tmp)
|
70 |
+
start=end
|
71 |
+
|
72 |
+
all_ds2=[]
|
73 |
+
tmp_index=0
|
74 |
+
for i in range(len(M.s_names)):
|
75 |
+
if (not 'RGB' in M.s_names[i]) and (not len(all_ds[tmp_index])==0):
|
76 |
+
|
77 |
+
# tmp=np.abs(all_ds[tmp_index]/M.code_std[i])
|
78 |
+
# print(i,tmp.mean())
|
79 |
+
# tmp=np.dot(M.latent_codes[i],all_ds[tmp_index])
|
80 |
+
# print(tmp)
|
81 |
+
if if_std:
|
82 |
+
tmp=all_ds[tmp_index]*M.code_std[i]
|
83 |
+
else:
|
84 |
+
tmp=all_ds[tmp_index]
|
85 |
+
|
86 |
+
all_ds2.append(tmp)
|
87 |
+
tmp_index+=1
|
88 |
+
else:
|
89 |
+
tmp=np.zeros(len(M.dlatents[i][0]))
|
90 |
+
all_ds2.append(tmp)
|
91 |
+
return all_ds2
|
92 |
+
|
93 |
+
|
94 |
+
imagenet_templates = [
|
95 |
+
'a bad photo of a {}.',
|
96 |
+
# 'a photo of many {}.',
|
97 |
+
'a sculpture of a {}.',
|
98 |
+
'a photo of the hard to see {}.',
|
99 |
+
'a low resolution photo of the {}.',
|
100 |
+
'a rendering of a {}.',
|
101 |
+
'graffiti of a {}.',
|
102 |
+
'a bad photo of the {}.',
|
103 |
+
'a cropped photo of the {}.',
|
104 |
+
'a tattoo of a {}.',
|
105 |
+
'the embroidered {}.',
|
106 |
+
'a photo of a hard to see {}.',
|
107 |
+
'a bright photo of a {}.',
|
108 |
+
'a photo of a clean {}.',
|
109 |
+
'a photo of a dirty {}.',
|
110 |
+
'a dark photo of the {}.',
|
111 |
+
'a drawing of a {}.',
|
112 |
+
'a photo of my {}.',
|
113 |
+
'the plastic {}.',
|
114 |
+
'a photo of the cool {}.',
|
115 |
+
'a close-up photo of a {}.',
|
116 |
+
'a black and white photo of the {}.',
|
117 |
+
'a painting of the {}.',
|
118 |
+
'a painting of a {}.',
|
119 |
+
'a pixelated photo of the {}.',
|
120 |
+
'a sculpture of the {}.',
|
121 |
+
'a bright photo of the {}.',
|
122 |
+
'a cropped photo of a {}.',
|
123 |
+
'a plastic {}.',
|
124 |
+
'a photo of the dirty {}.',
|
125 |
+
'a jpeg corrupted photo of a {}.',
|
126 |
+
'a blurry photo of the {}.',
|
127 |
+
'a photo of the {}.',
|
128 |
+
'a good photo of the {}.',
|
129 |
+
'a rendering of the {}.',
|
130 |
+
'a {} in a video game.',
|
131 |
+
'a photo of one {}.',
|
132 |
+
'a doodle of a {}.',
|
133 |
+
'a close-up photo of the {}.',
|
134 |
+
'a photo of a {}.',
|
135 |
+
'the origami {}.',
|
136 |
+
'the {} in a video game.',
|
137 |
+
'a sketch of a {}.',
|
138 |
+
'a doodle of the {}.',
|
139 |
+
'a origami {}.',
|
140 |
+
'a low resolution photo of a {}.',
|
141 |
+
'the toy {}.',
|
142 |
+
'a rendition of the {}.',
|
143 |
+
'a photo of the clean {}.',
|
144 |
+
'a photo of a large {}.',
|
145 |
+
'a rendition of a {}.',
|
146 |
+
'a photo of a nice {}.',
|
147 |
+
'a photo of a weird {}.',
|
148 |
+
'a blurry photo of a {}.',
|
149 |
+
'a cartoon {}.',
|
150 |
+
'art of a {}.',
|
151 |
+
'a sketch of the {}.',
|
152 |
+
'a embroidered {}.',
|
153 |
+
'a pixelated photo of a {}.',
|
154 |
+
'itap of the {}.',
|
155 |
+
'a jpeg corrupted photo of the {}.',
|
156 |
+
'a good photo of a {}.',
|
157 |
+
'a plushie {}.',
|
158 |
+
'a photo of the nice {}.',
|
159 |
+
'a photo of the small {}.',
|
160 |
+
'a photo of the weird {}.',
|
161 |
+
'the cartoon {}.',
|
162 |
+
'art of the {}.',
|
163 |
+
'a drawing of the {}.',
|
164 |
+
'a photo of the large {}.',
|
165 |
+
'a black and white photo of a {}.',
|
166 |
+
'the plushie {}.',
|
167 |
+
'a dark photo of a {}.',
|
168 |
+
'itap of a {}.',
|
169 |
+
'graffiti of the {}.',
|
170 |
+
'a toy {}.',
|
171 |
+
'itap of my {}.',
|
172 |
+
'a photo of a cool {}.',
|
173 |
+
'a photo of a small {}.',
|
174 |
+
'a tattoo of the {}.',
|
175 |
+
]
|
176 |
+
|
177 |
+
|
178 |
+
def zeroshot_classifier(classnames, templates,model):
|
179 |
+
with torch.no_grad():
|
180 |
+
zeroshot_weights = []
|
181 |
+
for classname in classnames:
|
182 |
+
texts = [template.format(classname) for template in templates] #format with class
|
183 |
+
texts = clip.tokenize(texts).cuda() #tokenize
|
184 |
+
class_embeddings = model.encode_text(texts) #embed with text encoder
|
185 |
+
class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True)
|
186 |
+
class_embedding = class_embeddings.mean(dim=0)
|
187 |
+
class_embedding /= class_embedding.norm()
|
188 |
+
zeroshot_weights.append(class_embedding)
|
189 |
+
zeroshot_weights = torch.stack(zeroshot_weights, dim=1).cuda()
|
190 |
+
return zeroshot_weights
|
191 |
+
|
192 |
+
|
193 |
+
def GetDt(classnames,model):
|
194 |
+
text_features=zeroshot_classifier(classnames, imagenet_templates,model).t()
|
195 |
+
|
196 |
+
dt=text_features[0]-text_features[1]
|
197 |
+
dt=dt.cpu().numpy()
|
198 |
+
|
199 |
+
# t_m1=t_m/np.linalg.norm(t_m)
|
200 |
+
# dt=text_features.cpu().numpy()[0]-t_m1
|
201 |
+
print(np.linalg.norm(dt))
|
202 |
+
dt=dt/np.linalg.norm(dt)
|
203 |
+
return dt
|
204 |
+
|
205 |
+
|
206 |
+
def GetBoundary(fs3,dt,M,threshold):
|
207 |
+
tmp=np.dot(fs3,dt)
|
208 |
+
|
209 |
+
ds_imp=copy.copy(tmp)
|
210 |
+
select=np.abs(tmp)<threshold
|
211 |
+
num_c=np.sum(~select)
|
212 |
+
|
213 |
+
|
214 |
+
ds_imp[select]=0
|
215 |
+
tmp=np.abs(ds_imp).max()
|
216 |
+
ds_imp/=tmp
|
217 |
+
|
218 |
+
boundary_tmp2=SplitS(ds_imp,M,if_std=True)
|
219 |
+
print('num of channels being manipulated:',num_c)
|
220 |
+
return boundary_tmp2,num_c
|
221 |
+
|
222 |
+
def GetFs(file_path):
|
223 |
+
fs=np.load(file_path+'single_channel.npy')
|
224 |
+
tmp=np.linalg.norm(fs,axis=-1)
|
225 |
+
fs1=fs/tmp[:,:,:,None]
|
226 |
+
fs2=fs1[:,:,1,:]-fs1[:,:,0,:] # 5*sigma - (-5)* sigma
|
227 |
+
fs3=fs2/np.linalg.norm(fs2,axis=-1)[:,:,None]
|
228 |
+
fs3=fs3.mean(axis=1)
|
229 |
+
fs3=fs3/np.linalg.norm(fs3,axis=-1)[:,None]
|
230 |
+
return fs3
|
231 |
+
#%%
|
232 |
+
|
233 |
+
if __name__ == "__main__":
|
234 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
235 |
+
model, preprocess = clip.load("ViT-B/32", device=device)
|
236 |
+
#%%
|
237 |
+
sys.path.append('/cs/labs/danix/wuzongze/Gan_Manipulation/play')
|
238 |
+
from example_try import Manipulator4
|
239 |
+
|
240 |
+
M=Manipulator4(dataset_name='ffhq',code_type='S')
|
241 |
+
np.set_printoptions(suppress=True)
|
242 |
+
|
243 |
+
#%%
|
244 |
+
|
245 |
+
|
246 |
+
file_path='/cs/labs/danix/wuzongze/Tansformer_Manipulation/CLIP/results/'+M.dataset_name+'/'
|
247 |
+
fs3=GetFs(file_path)
|
248 |
+
|
249 |
+
|
250 |
+
|
251 |
+
#%%
|
252 |
+
'''
|
253 |
+
text_features=zeroshot_classifier2(classnames, imagenet_templates) #.t()
|
254 |
+
|
255 |
+
tmp=np.linalg.norm(text_features,axis=2)
|
256 |
+
text_features/=tmp[:,:,None]
|
257 |
+
dt=text_features[0]-text_features[1]
|
258 |
+
|
259 |
+
tmp=np.linalg.norm(dt,axis=1)
|
260 |
+
dt/=tmp[:,None]
|
261 |
+
dt=dt.mean(axis=0)
|
262 |
+
'''
|
263 |
+
|
264 |
+
#%%
|
265 |
+
'''
|
266 |
+
all_tmp=[]
|
267 |
+
tmp=torch.load('/cs/labs/danix/wuzongze/downloads/harris_latent.pt')
|
268 |
+
tmp=tmp.cpu().detach().numpy() #[:,:14,:]
|
269 |
+
all_tmp.append(tmp)
|
270 |
+
|
271 |
+
tmp=torch.load('/cs/labs/danix/wuzongze/downloads/ariana_latent.pt')
|
272 |
+
tmp=tmp.cpu().detach().numpy() #[:,:14,:]
|
273 |
+
all_tmp.append(tmp)
|
274 |
+
|
275 |
+
tmp=torch.load('/cs/labs/danix/wuzongze/downloads/federer.pt')
|
276 |
+
tmp=tmp.cpu().detach().numpy() #[:,:14,:]
|
277 |
+
all_tmp.append(tmp)
|
278 |
+
|
279 |
+
all_tmp=np.array(all_tmp)[:,0]
|
280 |
+
|
281 |
+
dlatent_tmp=M.W2S(all_tmp)
|
282 |
+
'''
|
283 |
+
'''
|
284 |
+
tmp=torch.load('/cs/labs/danix/wuzongze/downloads/all_cars.pt')
|
285 |
+
tmp=tmp.cpu().detach().numpy()[:300]
|
286 |
+
dlatent_tmp=M.W2S(tmp)
|
287 |
+
'''
|
288 |
+
'''
|
289 |
+
tmp=torch.load('/cs/labs/danix/wuzongze/downloads/faces.pt')
|
290 |
+
tmp=tmp.cpu().detach().numpy()[:100]
|
291 |
+
dlatent_tmp=M.W2S(tmp)
|
292 |
+
'''
|
293 |
+
#%%
|
294 |
+
# M.viz_size=1024
|
295 |
+
M.img_index=0
|
296 |
+
M.num_images=30
|
297 |
+
dlatent_tmp=[tmp[M.img_index:(M.img_index+M.num_images)] for tmp in M.dlatents]
|
298 |
+
#%%
|
299 |
+
|
300 |
+
classnames=['face','face with glasses']
|
301 |
+
|
302 |
+
# classnames=['car','classic car']
|
303 |
+
# classnames=['dog','happy dog']
|
304 |
+
# classnames=['bedroom','modern bedroom']
|
305 |
+
|
306 |
+
# classnames=['church','church without watermark']
|
307 |
+
# classnames=['natural scene','natural scene without grass']
|
308 |
+
dt=GetDt(classnames,model)
|
309 |
+
# tmp=np.dot(fs3,dt)
|
310 |
+
#
|
311 |
+
# ds_imp=copy.copy(tmp)
|
312 |
+
# select=np.abs(tmp)<0.1
|
313 |
+
# num_c=np.sum(~select)
|
314 |
+
#
|
315 |
+
#
|
316 |
+
# ds_imp[select]=0
|
317 |
+
# tmp=np.abs(ds_imp).max()
|
318 |
+
# ds_imp/=tmp
|
319 |
+
#
|
320 |
+
# boundary_tmp2=SplitS(ds_imp,M,if_std=True)
|
321 |
+
# print('num of channels being manipulated:',num_c)
|
322 |
+
|
323 |
+
boundary_tmp2=GetBoundary(fs3,dt,M,threshold=0.13)
|
324 |
+
|
325 |
+
#%%
|
326 |
+
M.start_distance=-20
|
327 |
+
M.end_distance=20
|
328 |
+
M.step=7
|
329 |
+
# M.num_images=100
|
330 |
+
codes=M.MSCode(dlatent_tmp,boundary_tmp2)
|
331 |
+
out=M.GenerateImg(codes)
|
332 |
+
M.Vis2(str('tmp'),'filter2',out)
|
333 |
+
|
334 |
+
# full=GetAlign(out,dt,model,preprocess)
|
335 |
+
|
336 |
+
|
337 |
+
#%%
|
338 |
+
boundary_tmp3=copy.copy(boundary_tmp2) #primary
|
339 |
+
boundary_tmp4=copy.copy(boundary_tmp2) #condition
|
340 |
+
#%%
|
341 |
+
boundary_tmp2=copy.copy(boundary_tmp3)
|
342 |
+
for i in range(len(boundary_tmp3)):
|
343 |
+
select=boundary_tmp4[i]==0
|
344 |
+
boundary_tmp2[i][~select]=0
|
345 |
+
|
346 |
+
|
347 |
+
|
348 |
+
|
349 |
+
|
350 |
+
|
351 |
+
|
352 |
+
#%%1
|
353 |
+
|
354 |
+
|
355 |
+
|
356 |
+
|
357 |
+
|
358 |
+
|
359 |
+
|
360 |
+
|
361 |
+
|
362 |
+
|
363 |
+
|
364 |
+
|
365 |
+
|
366 |
+
|
367 |
+
|
368 |
+
|
369 |
+
|
370 |
+
|
371 |
+
|
372 |
+
|
373 |
+
|
374 |
+
|
375 |
+
|
376 |
+
|
377 |
+
|
378 |
+
|
379 |
+
|
380 |
+
|
381 |
+
|
382 |
+
|
383 |
+
|
384 |
+
|
385 |
+
|
386 |
+
|
387 |
+
|
388 |
+
|
389 |
+
|
390 |
+
|
391 |
+
|
392 |
+
|
393 |
+
|
394 |
+
|
PTI/models/StyleCLIP/global_directions/PlayInteractively.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
|
4 |
+
from tkinter import Tk
|
5 |
+
from PIL import Image, ImageTk
|
6 |
+
from tkinter.filedialog import askopenfilename
|
7 |
+
from GUI import View
|
8 |
+
from Inference import StyleCLIP
|
9 |
+
import argparse
|
10 |
+
#%%
|
11 |
+
|
12 |
+
|
13 |
+
class PlayInteractively(): #Controller
|
14 |
+
'''
|
15 |
+
followed Model View Controller Design Pattern
|
16 |
+
|
17 |
+
controller, model, view
|
18 |
+
'''
|
19 |
+
def __init__(self,dataset_name='ffhq'):
|
20 |
+
|
21 |
+
self.root = Tk()
|
22 |
+
self.view=View(self.root)
|
23 |
+
self.img_ratio=2
|
24 |
+
self.style_clip=StyleCLIP(dataset_name)
|
25 |
+
|
26 |
+
self.view.neutral.bind("<Return>", self.text_n)
|
27 |
+
self.view.target.bind("<Return>", self.text_t)
|
28 |
+
self.view.alpha.bind('<ButtonRelease-1>', self.ChangeAlpha)
|
29 |
+
self.view.beta.bind('<ButtonRelease-1>', self.ChangeBeta)
|
30 |
+
self.view.set_init.bind('<ButtonPress-1>', self.SetInit)
|
31 |
+
self.view.reset.bind('<ButtonPress-1>', self.Reset)
|
32 |
+
self.view.bg.bind('<Double-1>', self.open_img)
|
33 |
+
|
34 |
+
|
35 |
+
self.drawn = None
|
36 |
+
|
37 |
+
self.view.target.delete(1.0, "end")
|
38 |
+
self.view.target.insert("end", self.style_clip.target)
|
39 |
+
#
|
40 |
+
self.view.neutral.delete(1.0, "end")
|
41 |
+
self.view.neutral.insert("end", self.style_clip.neutral)
|
42 |
+
|
43 |
+
|
44 |
+
def Reset(self,event):
|
45 |
+
self.style_clip.GetDt2()
|
46 |
+
self.style_clip.M.alpha=[0]
|
47 |
+
|
48 |
+
self.view.beta.set(self.style_clip.beta)
|
49 |
+
self.view.alpha.set(0)
|
50 |
+
|
51 |
+
img=self.style_clip.GetImg()
|
52 |
+
img=Image.fromarray(img)
|
53 |
+
img = ImageTk.PhotoImage(img)
|
54 |
+
self.addImage_m(img)
|
55 |
+
|
56 |
+
|
57 |
+
def SetInit(self,event):
|
58 |
+
codes=self.style_clip.GetCode()
|
59 |
+
self.style_clip.M.dlatent_tmp=[tmp[:,0] for tmp in codes]
|
60 |
+
print('set init')
|
61 |
+
|
62 |
+
def ChangeAlpha(self,event):
|
63 |
+
tmp=self.view.alpha.get()
|
64 |
+
self.style_clip.M.alpha=[float(tmp)]
|
65 |
+
|
66 |
+
img=self.style_clip.GetImg()
|
67 |
+
print('manipulate one')
|
68 |
+
img=Image.fromarray(img)
|
69 |
+
img = ImageTk.PhotoImage(img)
|
70 |
+
self.addImage_m(img)
|
71 |
+
|
72 |
+
def ChangeBeta(self,event):
|
73 |
+
tmp=self.view.beta.get()
|
74 |
+
self.style_clip.beta=float(tmp)
|
75 |
+
|
76 |
+
img=self.style_clip.GetImg()
|
77 |
+
print('manipulate one')
|
78 |
+
img=Image.fromarray(img)
|
79 |
+
img = ImageTk.PhotoImage(img)
|
80 |
+
self.addImage_m(img)
|
81 |
+
|
82 |
+
def ChangeDataset(self,event):
|
83 |
+
|
84 |
+
dataset_name=self.view.set_category.get()
|
85 |
+
|
86 |
+
self.style_clip.LoadData(dataset_name)
|
87 |
+
|
88 |
+
self.view.target.delete(1.0, "end")
|
89 |
+
self.view.target.insert("end", self.style_clip.target)
|
90 |
+
|
91 |
+
self.view.neutral.delete(1.0, "end")
|
92 |
+
self.view.neutral.insert("end", self.style_clip.neutral)
|
93 |
+
|
94 |
+
def text_t(self,event):
|
95 |
+
tmp=self.view.target.get("1.0",'end')
|
96 |
+
tmp=tmp.replace('\n','')
|
97 |
+
|
98 |
+
self.view.target.delete(1.0, "end")
|
99 |
+
self.view.target.insert("end", tmp)
|
100 |
+
|
101 |
+
print('target',tmp,'###')
|
102 |
+
self.style_clip.target=tmp
|
103 |
+
self.style_clip.GetDt2()
|
104 |
+
self.view.beta.set(self.style_clip.beta)
|
105 |
+
self.view.alpha.set(3)
|
106 |
+
self.style_clip.M.alpha=[3]
|
107 |
+
|
108 |
+
img=self.style_clip.GetImg()
|
109 |
+
print('manipulate one')
|
110 |
+
img=Image.fromarray(img)
|
111 |
+
img = ImageTk.PhotoImage(img)
|
112 |
+
self.addImage_m(img)
|
113 |
+
|
114 |
+
|
115 |
+
def text_n(self,event):
|
116 |
+
tmp=self.view.neutral.get("1.0",'end')
|
117 |
+
tmp=tmp.replace('\n','')
|
118 |
+
|
119 |
+
self.view.neutral.delete(1.0, "end")
|
120 |
+
self.view.neutral.insert("end", tmp)
|
121 |
+
|
122 |
+
print('neutral',tmp,'###')
|
123 |
+
self.style_clip.neutral=tmp
|
124 |
+
self.view.target.delete(1.0, "end")
|
125 |
+
self.view.target.insert("end", tmp)
|
126 |
+
|
127 |
+
|
128 |
+
def run(self):
|
129 |
+
self.root.mainloop()
|
130 |
+
|
131 |
+
def addImage(self,img):
|
132 |
+
self.view.bg.create_image(self.view.width/2, self.view.height/2, image=img, anchor='center')
|
133 |
+
self.image=img #save a copy of image. if not the image will disappear
|
134 |
+
|
135 |
+
def addImage_m(self,img):
|
136 |
+
self.view.mani.create_image(512, 512, image=img, anchor='center')
|
137 |
+
self.image2=img
|
138 |
+
|
139 |
+
|
140 |
+
def openfn(self):
|
141 |
+
filename = askopenfilename(title='open',initialdir='./data/'+self.style_clip.M.dataset_name+'/',filetypes=[("all image format", ".jpg"),("all image format", ".png")])
|
142 |
+
return filename
|
143 |
+
|
144 |
+
def open_img(self,event):
|
145 |
+
x = self.openfn()
|
146 |
+
print(x)
|
147 |
+
|
148 |
+
|
149 |
+
img = Image.open(x)
|
150 |
+
img2 = img.resize(( 512,512), Image.ANTIALIAS)
|
151 |
+
img2 = ImageTk.PhotoImage(img2)
|
152 |
+
self.addImage(img2)
|
153 |
+
|
154 |
+
img = ImageTk.PhotoImage(img)
|
155 |
+
self.addImage_m(img)
|
156 |
+
|
157 |
+
img_index=x.split('/')[-1].split('.')[0]
|
158 |
+
img_index=int(img_index)
|
159 |
+
print(img_index)
|
160 |
+
self.style_clip.M.img_index=img_index
|
161 |
+
self.style_clip.M.dlatent_tmp=[tmp[img_index:(img_index+1)] for tmp in self.style_clip.M.dlatents]
|
162 |
+
|
163 |
+
|
164 |
+
self.style_clip.GetDt2()
|
165 |
+
self.view.beta.set(self.style_clip.beta)
|
166 |
+
self.view.alpha.set(3)
|
167 |
+
|
168 |
+
#%%
|
169 |
+
if __name__ == "__main__":
|
170 |
+
parser = argparse.ArgumentParser(description='Process some integers.')
|
171 |
+
|
172 |
+
parser.add_argument('--dataset_name',type=str,default='ffhq',
|
173 |
+
help='name of dataset, for example, ffhq')
|
174 |
+
|
175 |
+
args = parser.parse_args()
|
176 |
+
dataset_name=args.dataset_name
|
177 |
+
|
178 |
+
self=PlayInteractively(dataset_name)
|
179 |
+
self.run()
|
180 |
+
|
181 |
+
|
182 |
+
|
183 |
+
|
184 |
+
|
185 |
+
|
186 |
+
|
187 |
+
|
188 |
+
|
189 |
+
|
190 |
+
|
191 |
+
|
192 |
+
|
193 |
+
|
194 |
+
|
195 |
+
|
196 |
+
|
197 |
+
|
PTI/models/StyleCLIP/global_directions/SingleChannel.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import clip
|
7 |
+
from PIL import Image
|
8 |
+
import copy
|
9 |
+
from manipulate import Manipulator
|
10 |
+
import argparse
|
11 |
+
|
12 |
+
def GetImgF(out,model,preprocess):
|
13 |
+
imgs=out
|
14 |
+
imgs1=imgs.reshape([-1]+list(imgs.shape[2:]))
|
15 |
+
|
16 |
+
tmp=[]
|
17 |
+
for i in range(len(imgs1)):
|
18 |
+
|
19 |
+
img=Image.fromarray(imgs1[i])
|
20 |
+
image = preprocess(img).unsqueeze(0).to(device)
|
21 |
+
tmp.append(image)
|
22 |
+
|
23 |
+
image=torch.cat(tmp)
|
24 |
+
with torch.no_grad():
|
25 |
+
image_features = model.encode_image(image)
|
26 |
+
|
27 |
+
image_features1=image_features.cpu().numpy()
|
28 |
+
image_features1=image_features1.reshape(list(imgs.shape[:2])+[512])
|
29 |
+
|
30 |
+
return image_features1
|
31 |
+
|
32 |
+
def GetFs(fs):
|
33 |
+
tmp=np.linalg.norm(fs,axis=-1)
|
34 |
+
fs1=fs/tmp[:,:,:,None]
|
35 |
+
fs2=fs1[:,:,1,:]-fs1[:,:,0,:] # 5*sigma - (-5)* sigma
|
36 |
+
fs3=fs2/np.linalg.norm(fs2,axis=-1)[:,:,None]
|
37 |
+
fs3=fs3.mean(axis=1)
|
38 |
+
fs3=fs3/np.linalg.norm(fs3,axis=-1)[:,None]
|
39 |
+
return fs3
|
40 |
+
|
41 |
+
#%%
|
42 |
+
if __name__ == "__main__":
|
43 |
+
parser = argparse.ArgumentParser(description='Process some integers.')
|
44 |
+
|
45 |
+
parser.add_argument('--dataset_name',type=str,default='cat',
|
46 |
+
help='name of dataset, for example, ffhq')
|
47 |
+
args = parser.parse_args()
|
48 |
+
dataset_name=args.dataset_name
|
49 |
+
|
50 |
+
#%%
|
51 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
52 |
+
model, preprocess = clip.load("ViT-B/32", device=device)
|
53 |
+
#%%
|
54 |
+
M=Manipulator(dataset_name=dataset_name)
|
55 |
+
np.set_printoptions(suppress=True)
|
56 |
+
print(M.dataset_name)
|
57 |
+
#%%
|
58 |
+
img_sindex=0
|
59 |
+
num_images=100
|
60 |
+
dlatents_o=[]
|
61 |
+
tmp=img_sindex*num_images
|
62 |
+
for i in range(len(M.dlatents)):
|
63 |
+
tmp1=M.dlatents[i][tmp:(tmp+num_images)]
|
64 |
+
dlatents_o.append(tmp1)
|
65 |
+
#%%
|
66 |
+
|
67 |
+
all_f=[]
|
68 |
+
M.alpha=[-5,5] #ffhq 5
|
69 |
+
M.step=2
|
70 |
+
M.num_images=num_images
|
71 |
+
select=np.array(M.mindexs)<=16 #below or equal to 128 resolution
|
72 |
+
mindexs2=np.array(M.mindexs)[select]
|
73 |
+
for lindex in mindexs2: #ignore ToRGB layers
|
74 |
+
print(lindex)
|
75 |
+
num_c=M.dlatents[lindex].shape[1]
|
76 |
+
for cindex in range(num_c):
|
77 |
+
|
78 |
+
M.dlatents=copy.copy(dlatents_o)
|
79 |
+
M.dlatents[lindex][:,cindex]=M.code_mean[lindex][cindex]
|
80 |
+
|
81 |
+
M.manipulate_layers=[lindex]
|
82 |
+
codes,out=M.EditOneC(cindex)
|
83 |
+
image_features1=GetImgF(out,model,preprocess)
|
84 |
+
all_f.append(image_features1)
|
85 |
+
|
86 |
+
all_f=np.array(all_f)
|
87 |
+
|
88 |
+
fs3=GetFs(all_f)
|
89 |
+
|
90 |
+
#%%
|
91 |
+
file_path='./npy/'+M.dataset_name+'/'
|
92 |
+
np.save(file_path+'fs3',fs3)
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
|
PTI/models/StyleCLIP/global_directions/__init__.py
ADDED
File without changes
|
PTI/models/StyleCLIP/global_directions/data/ffhq/w_plus.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:394f0f166305654f49cd1b0cd3d4f2b7a51e740a449a1ebfa1c69f79d01399fa
|
3 |
+
size 2506880
|
PTI/models/StyleCLIP/global_directions/dnnlib/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
from .util import EasyDict, make_cache_dir_path
|
PTI/models/StyleCLIP/global_directions/dnnlib/tflib/__init__.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
from . import autosummary
|
10 |
+
from . import network
|
11 |
+
from . import optimizer
|
12 |
+
from . import tfutil
|
13 |
+
from . import custom_ops
|
14 |
+
|
15 |
+
from .tfutil import *
|
16 |
+
from .network import Network
|
17 |
+
|
18 |
+
from .optimizer import Optimizer
|
19 |
+
|
20 |
+
from .custom_ops import get_plugin
|
PTI/models/StyleCLIP/global_directions/dnnlib/tflib/autosummary.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
"""Helper for adding automatically tracked values to Tensorboard.
|
10 |
+
|
11 |
+
Autosummary creates an identity op that internally keeps track of the input
|
12 |
+
values and automatically shows up in TensorBoard. The reported value
|
13 |
+
represents an average over input components. The average is accumulated
|
14 |
+
constantly over time and flushed when save_summaries() is called.
|
15 |
+
|
16 |
+
Notes:
|
17 |
+
- The output tensor must be used as an input for something else in the
|
18 |
+
graph. Otherwise, the autosummary op will not get executed, and the average
|
19 |
+
value will not get accumulated.
|
20 |
+
- It is perfectly fine to include autosummaries with the same name in
|
21 |
+
several places throughout the graph, even if they are executed concurrently.
|
22 |
+
- It is ok to also pass in a python scalar or numpy array. In this case, it
|
23 |
+
is added to the average immediately.
|
24 |
+
"""
|
25 |
+
|
26 |
+
from collections import OrderedDict
|
27 |
+
import numpy as np
|
28 |
+
import tensorflow as tf
|
29 |
+
from tensorboard import summary as summary_lib
|
30 |
+
from tensorboard.plugins.custom_scalar import layout_pb2
|
31 |
+
|
32 |
+
from . import tfutil
|
33 |
+
from .tfutil import TfExpression
|
34 |
+
from .tfutil import TfExpressionEx
|
35 |
+
|
36 |
+
# Enable "Custom scalars" tab in TensorBoard for advanced formatting.
|
37 |
+
# Disabled by default to reduce tfevents file size.
|
38 |
+
enable_custom_scalars = False
|
39 |
+
|
40 |
+
_dtype = tf.float64
|
41 |
+
_vars = OrderedDict() # name => [var, ...]
|
42 |
+
_immediate = OrderedDict() # name => update_op, update_value
|
43 |
+
_finalized = False
|
44 |
+
_merge_op = None
|
45 |
+
|
46 |
+
|
47 |
+
def _create_var(name: str, value_expr: TfExpression) -> TfExpression:
|
48 |
+
"""Internal helper for creating autosummary accumulators."""
|
49 |
+
assert not _finalized
|
50 |
+
name_id = name.replace("/", "_")
|
51 |
+
v = tf.cast(value_expr, _dtype)
|
52 |
+
|
53 |
+
if v.shape.is_fully_defined():
|
54 |
+
size = np.prod(v.shape.as_list())
|
55 |
+
size_expr = tf.constant(size, dtype=_dtype)
|
56 |
+
else:
|
57 |
+
size = None
|
58 |
+
size_expr = tf.reduce_prod(tf.cast(tf.shape(v), _dtype))
|
59 |
+
|
60 |
+
if size == 1:
|
61 |
+
if v.shape.ndims != 0:
|
62 |
+
v = tf.reshape(v, [])
|
63 |
+
v = [size_expr, v, tf.square(v)]
|
64 |
+
else:
|
65 |
+
v = [size_expr, tf.reduce_sum(v), tf.reduce_sum(tf.square(v))]
|
66 |
+
v = tf.cond(tf.is_finite(v[1]), lambda: tf.stack(v), lambda: tf.zeros(3, dtype=_dtype))
|
67 |
+
|
68 |
+
with tfutil.absolute_name_scope("Autosummary/" + name_id), tf.control_dependencies(None):
|
69 |
+
var = tf.Variable(tf.zeros(3, dtype=_dtype), trainable=False) # [sum(1), sum(x), sum(x**2)]
|
70 |
+
update_op = tf.cond(tf.is_variable_initialized(var), lambda: tf.assign_add(var, v), lambda: tf.assign(var, v))
|
71 |
+
|
72 |
+
if name in _vars:
|
73 |
+
_vars[name].append(var)
|
74 |
+
else:
|
75 |
+
_vars[name] = [var]
|
76 |
+
return update_op
|
77 |
+
|
78 |
+
|
79 |
+
def autosummary(name: str, value: TfExpressionEx, passthru: TfExpressionEx = None, condition: TfExpressionEx = True) -> TfExpressionEx:
|
80 |
+
"""Create a new autosummary.
|
81 |
+
|
82 |
+
Args:
|
83 |
+
name: Name to use in TensorBoard
|
84 |
+
value: TensorFlow expression or python value to track
|
85 |
+
passthru: Optionally return this TF node without modifications but tack an autosummary update side-effect to this node.
|
86 |
+
|
87 |
+
Example use of the passthru mechanism:
|
88 |
+
|
89 |
+
n = autosummary('l2loss', loss, passthru=n)
|
90 |
+
|
91 |
+
This is a shorthand for the following code:
|
92 |
+
|
93 |
+
with tf.control_dependencies([autosummary('l2loss', loss)]):
|
94 |
+
n = tf.identity(n)
|
95 |
+
"""
|
96 |
+
tfutil.assert_tf_initialized()
|
97 |
+
name_id = name.replace("/", "_")
|
98 |
+
|
99 |
+
if tfutil.is_tf_expression(value):
|
100 |
+
with tf.name_scope("summary_" + name_id), tf.device(value.device):
|
101 |
+
condition = tf.convert_to_tensor(condition, name='condition')
|
102 |
+
update_op = tf.cond(condition, lambda: tf.group(_create_var(name, value)), tf.no_op)
|
103 |
+
with tf.control_dependencies([update_op]):
|
104 |
+
return tf.identity(value if passthru is None else passthru)
|
105 |
+
|
106 |
+
else: # python scalar or numpy array
|
107 |
+
assert not tfutil.is_tf_expression(passthru)
|
108 |
+
assert not tfutil.is_tf_expression(condition)
|
109 |
+
if condition:
|
110 |
+
if name not in _immediate:
|
111 |
+
with tfutil.absolute_name_scope("Autosummary/" + name_id), tf.device(None), tf.control_dependencies(None):
|
112 |
+
update_value = tf.placeholder(_dtype)
|
113 |
+
update_op = _create_var(name, update_value)
|
114 |
+
_immediate[name] = update_op, update_value
|
115 |
+
update_op, update_value = _immediate[name]
|
116 |
+
tfutil.run(update_op, {update_value: value})
|
117 |
+
return value if passthru is None else passthru
|
118 |
+
|
119 |
+
|
120 |
+
def finalize_autosummaries() -> None:
|
121 |
+
"""Create the necessary ops to include autosummaries in TensorBoard report.
|
122 |
+
Note: This should be done only once per graph.
|
123 |
+
"""
|
124 |
+
global _finalized
|
125 |
+
tfutil.assert_tf_initialized()
|
126 |
+
|
127 |
+
if _finalized:
|
128 |
+
return None
|
129 |
+
|
130 |
+
_finalized = True
|
131 |
+
tfutil.init_uninitialized_vars([var for vars_list in _vars.values() for var in vars_list])
|
132 |
+
|
133 |
+
# Create summary ops.
|
134 |
+
with tf.device(None), tf.control_dependencies(None):
|
135 |
+
for name, vars_list in _vars.items():
|
136 |
+
name_id = name.replace("/", "_")
|
137 |
+
with tfutil.absolute_name_scope("Autosummary/" + name_id):
|
138 |
+
moments = tf.add_n(vars_list)
|
139 |
+
moments /= moments[0]
|
140 |
+
with tf.control_dependencies([moments]): # read before resetting
|
141 |
+
reset_ops = [tf.assign(var, tf.zeros(3, dtype=_dtype)) for var in vars_list]
|
142 |
+
with tf.name_scope(None), tf.control_dependencies(reset_ops): # reset before reporting
|
143 |
+
mean = moments[1]
|
144 |
+
std = tf.sqrt(moments[2] - tf.square(moments[1]))
|
145 |
+
tf.summary.scalar(name, mean)
|
146 |
+
if enable_custom_scalars:
|
147 |
+
tf.summary.scalar("xCustomScalars/" + name + "/margin_lo", mean - std)
|
148 |
+
tf.summary.scalar("xCustomScalars/" + name + "/margin_hi", mean + std)
|
149 |
+
|
150 |
+
# Setup layout for custom scalars.
|
151 |
+
layout = None
|
152 |
+
if enable_custom_scalars:
|
153 |
+
cat_dict = OrderedDict()
|
154 |
+
for series_name in sorted(_vars.keys()):
|
155 |
+
p = series_name.split("/")
|
156 |
+
cat = p[0] if len(p) >= 2 else ""
|
157 |
+
chart = "/".join(p[1:-1]) if len(p) >= 3 else p[-1]
|
158 |
+
if cat not in cat_dict:
|
159 |
+
cat_dict[cat] = OrderedDict()
|
160 |
+
if chart not in cat_dict[cat]:
|
161 |
+
cat_dict[cat][chart] = []
|
162 |
+
cat_dict[cat][chart].append(series_name)
|
163 |
+
categories = []
|
164 |
+
for cat_name, chart_dict in cat_dict.items():
|
165 |
+
charts = []
|
166 |
+
for chart_name, series_names in chart_dict.items():
|
167 |
+
series = []
|
168 |
+
for series_name in series_names:
|
169 |
+
series.append(layout_pb2.MarginChartContent.Series(
|
170 |
+
value=series_name,
|
171 |
+
lower="xCustomScalars/" + series_name + "/margin_lo",
|
172 |
+
upper="xCustomScalars/" + series_name + "/margin_hi"))
|
173 |
+
margin = layout_pb2.MarginChartContent(series=series)
|
174 |
+
charts.append(layout_pb2.Chart(title=chart_name, margin=margin))
|
175 |
+
categories.append(layout_pb2.Category(title=cat_name, chart=charts))
|
176 |
+
layout = summary_lib.custom_scalar_pb(layout_pb2.Layout(category=categories))
|
177 |
+
return layout
|
178 |
+
|
179 |
+
def save_summaries(file_writer, global_step=None):
|
180 |
+
"""Call FileWriter.add_summary() with all summaries in the default graph,
|
181 |
+
automatically finalizing and merging them on the first call.
|
182 |
+
"""
|
183 |
+
global _merge_op
|
184 |
+
tfutil.assert_tf_initialized()
|
185 |
+
|
186 |
+
if _merge_op is None:
|
187 |
+
layout = finalize_autosummaries()
|
188 |
+
if layout is not None:
|
189 |
+
file_writer.add_summary(layout)
|
190 |
+
with tf.device(None), tf.control_dependencies(None):
|
191 |
+
_merge_op = tf.summary.merge_all()
|
192 |
+
|
193 |
+
file_writer.add_summary(_merge_op.eval(), global_step)
|
PTI/models/StyleCLIP/global_directions/dnnlib/tflib/custom_ops.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
"""TensorFlow custom ops builder.
|
10 |
+
"""
|
11 |
+
|
12 |
+
import glob
|
13 |
+
import os
|
14 |
+
import re
|
15 |
+
import uuid
|
16 |
+
import hashlib
|
17 |
+
import tempfile
|
18 |
+
import shutil
|
19 |
+
import tensorflow as tf
|
20 |
+
from tensorflow.python.client import device_lib # pylint: disable=no-name-in-module
|
21 |
+
|
22 |
+
from .. import util
|
23 |
+
|
24 |
+
#----------------------------------------------------------------------------
|
25 |
+
# Global configs.
|
26 |
+
|
27 |
+
cuda_cache_path = None
|
28 |
+
cuda_cache_version_tag = 'v1'
|
29 |
+
do_not_hash_included_headers = True # Speed up compilation by assuming that headers included by the CUDA code never change.
|
30 |
+
verbose = True # Print status messages to stdout.
|
31 |
+
|
32 |
+
#----------------------------------------------------------------------------
|
33 |
+
# Internal helper funcs.
|
34 |
+
|
35 |
+
def _find_compiler_bindir():
|
36 |
+
hostx64_paths = sorted(glob.glob('C:/Program Files (x86)/Microsoft Visual Studio/*/Professional/VC/Tools/MSVC/*/bin/Hostx64/x64'), reverse=True)
|
37 |
+
if hostx64_paths != []:
|
38 |
+
return hostx64_paths[0]
|
39 |
+
hostx64_paths = sorted(glob.glob('C:/Program Files (x86)/Microsoft Visual Studio/*/BuildTools/VC/Tools/MSVC/*/bin/Hostx64/x64'), reverse=True)
|
40 |
+
if hostx64_paths != []:
|
41 |
+
return hostx64_paths[0]
|
42 |
+
hostx64_paths = sorted(glob.glob('C:/Program Files (x86)/Microsoft Visual Studio/*/Community/VC/Tools/MSVC/*/bin/Hostx64/x64'), reverse=True)
|
43 |
+
if hostx64_paths != []:
|
44 |
+
return hostx64_paths[0]
|
45 |
+
vc_bin_dir = 'C:/Program Files (x86)/Microsoft Visual Studio 14.0/vc/bin'
|
46 |
+
if os.path.isdir(vc_bin_dir):
|
47 |
+
return vc_bin_dir
|
48 |
+
return None
|
49 |
+
|
50 |
+
def _get_compute_cap(device):
|
51 |
+
caps_str = device.physical_device_desc
|
52 |
+
m = re.search('compute capability: (\\d+).(\\d+)', caps_str)
|
53 |
+
major = m.group(1)
|
54 |
+
minor = m.group(2)
|
55 |
+
return (major, minor)
|
56 |
+
|
57 |
+
def _get_cuda_gpu_arch_string():
|
58 |
+
gpus = [x for x in device_lib.list_local_devices() if x.device_type == 'GPU']
|
59 |
+
if len(gpus) == 0:
|
60 |
+
raise RuntimeError('No GPU devices found')
|
61 |
+
(major, minor) = _get_compute_cap(gpus[0])
|
62 |
+
return 'sm_%s%s' % (major, minor)
|
63 |
+
|
64 |
+
def _run_cmd(cmd):
|
65 |
+
with os.popen(cmd) as pipe:
|
66 |
+
output = pipe.read()
|
67 |
+
status = pipe.close()
|
68 |
+
if status is not None:
|
69 |
+
raise RuntimeError('NVCC returned an error. See below for full command line and output log:\n\n%s\n\n%s' % (cmd, output))
|
70 |
+
|
71 |
+
def _prepare_nvcc_cli(opts):
|
72 |
+
cmd = 'nvcc ' + opts.strip()
|
73 |
+
cmd += ' --disable-warnings'
|
74 |
+
cmd += ' --include-path "%s"' % tf.sysconfig.get_include()
|
75 |
+
cmd += ' --include-path "%s"' % os.path.join(tf.sysconfig.get_include(), 'external', 'protobuf_archive', 'src')
|
76 |
+
cmd += ' --include-path "%s"' % os.path.join(tf.sysconfig.get_include(), 'external', 'com_google_absl')
|
77 |
+
cmd += ' --include-path "%s"' % os.path.join(tf.sysconfig.get_include(), 'external', 'eigen_archive')
|
78 |
+
|
79 |
+
compiler_bindir = _find_compiler_bindir()
|
80 |
+
if compiler_bindir is None:
|
81 |
+
# Require that _find_compiler_bindir succeeds on Windows. Allow
|
82 |
+
# nvcc to use whatever is the default on Linux.
|
83 |
+
if os.name == 'nt':
|
84 |
+
raise RuntimeError('Could not find MSVC/GCC/CLANG installation on this computer. Check compiler_bindir_search_path list in "%s".' % __file__)
|
85 |
+
else:
|
86 |
+
cmd += ' --compiler-bindir "%s"' % compiler_bindir
|
87 |
+
cmd += ' 2>&1'
|
88 |
+
return cmd
|
89 |
+
|
90 |
+
#----------------------------------------------------------------------------
|
91 |
+
# Main entry point.
|
92 |
+
|
93 |
+
_plugin_cache = dict()
|
94 |
+
|
95 |
+
def get_plugin(cuda_file, extra_nvcc_options=[]):
|
96 |
+
cuda_file_base = os.path.basename(cuda_file)
|
97 |
+
cuda_file_name, cuda_file_ext = os.path.splitext(cuda_file_base)
|
98 |
+
|
99 |
+
# Already in cache?
|
100 |
+
if cuda_file in _plugin_cache:
|
101 |
+
return _plugin_cache[cuda_file]
|
102 |
+
|
103 |
+
# Setup plugin.
|
104 |
+
if verbose:
|
105 |
+
print('Setting up TensorFlow plugin "%s": ' % cuda_file_base, end='', flush=True)
|
106 |
+
try:
|
107 |
+
# Hash CUDA source.
|
108 |
+
md5 = hashlib.md5()
|
109 |
+
with open(cuda_file, 'rb') as f:
|
110 |
+
md5.update(f.read())
|
111 |
+
md5.update(b'\n')
|
112 |
+
|
113 |
+
# Hash headers included by the CUDA code by running it through the preprocessor.
|
114 |
+
if not do_not_hash_included_headers:
|
115 |
+
if verbose:
|
116 |
+
print('Preprocessing... ', end='', flush=True)
|
117 |
+
with tempfile.TemporaryDirectory() as tmp_dir:
|
118 |
+
tmp_file = os.path.join(tmp_dir, cuda_file_name + '_tmp' + cuda_file_ext)
|
119 |
+
_run_cmd(_prepare_nvcc_cli('"%s" --preprocess -o "%s" --keep --keep-dir "%s"' % (cuda_file, tmp_file, tmp_dir)))
|
120 |
+
with open(tmp_file, 'rb') as f:
|
121 |
+
bad_file_str = ('"' + cuda_file.replace('\\', '/') + '"').encode('utf-8') # __FILE__ in error check macros
|
122 |
+
good_file_str = ('"' + cuda_file_base + '"').encode('utf-8')
|
123 |
+
for ln in f:
|
124 |
+
if not ln.startswith(b'# ') and not ln.startswith(b'#line '): # ignore line number pragmas
|
125 |
+
ln = ln.replace(bad_file_str, good_file_str)
|
126 |
+
md5.update(ln)
|
127 |
+
md5.update(b'\n')
|
128 |
+
|
129 |
+
# Select compiler configs.
|
130 |
+
compile_opts = ''
|
131 |
+
if os.name == 'nt':
|
132 |
+
compile_opts += '"%s"' % os.path.join(tf.sysconfig.get_lib(), 'python', '_pywrap_tensorflow_internal.lib')
|
133 |
+
elif os.name == 'posix':
|
134 |
+
compile_opts += f' --compiler-options \'-fPIC\''
|
135 |
+
compile_opts += f' --compiler-options \'{" ".join(tf.sysconfig.get_compile_flags())}\''
|
136 |
+
compile_opts += f' --linker-options \'{" ".join(tf.sysconfig.get_link_flags())}\''
|
137 |
+
else:
|
138 |
+
assert False # not Windows or Linux, w00t?
|
139 |
+
compile_opts += f' --gpu-architecture={_get_cuda_gpu_arch_string()}'
|
140 |
+
compile_opts += ' --use_fast_math'
|
141 |
+
for opt in extra_nvcc_options:
|
142 |
+
compile_opts += ' ' + opt
|
143 |
+
nvcc_cmd = _prepare_nvcc_cli(compile_opts)
|
144 |
+
|
145 |
+
# Hash build configuration.
|
146 |
+
md5.update(('nvcc_cmd: ' + nvcc_cmd).encode('utf-8') + b'\n')
|
147 |
+
md5.update(('tf.VERSION: ' + tf.VERSION).encode('utf-8') + b'\n')
|
148 |
+
md5.update(('cuda_cache_version_tag: ' + cuda_cache_version_tag).encode('utf-8') + b'\n')
|
149 |
+
|
150 |
+
# Compile if not already compiled.
|
151 |
+
cache_dir = util.make_cache_dir_path('tflib-cudacache') if cuda_cache_path is None else cuda_cache_path
|
152 |
+
bin_file_ext = '.dll' if os.name == 'nt' else '.so'
|
153 |
+
bin_file = os.path.join(cache_dir, cuda_file_name + '_' + md5.hexdigest() + bin_file_ext)
|
154 |
+
if not os.path.isfile(bin_file):
|
155 |
+
if verbose:
|
156 |
+
print('Compiling... ', end='', flush=True)
|
157 |
+
with tempfile.TemporaryDirectory() as tmp_dir:
|
158 |
+
tmp_file = os.path.join(tmp_dir, cuda_file_name + '_tmp' + bin_file_ext)
|
159 |
+
_run_cmd(nvcc_cmd + ' "%s" --shared -o "%s" --keep --keep-dir "%s"' % (cuda_file, tmp_file, tmp_dir))
|
160 |
+
os.makedirs(cache_dir, exist_ok=True)
|
161 |
+
intermediate_file = os.path.join(cache_dir, cuda_file_name + '_' + uuid.uuid4().hex + '_tmp' + bin_file_ext)
|
162 |
+
shutil.copyfile(tmp_file, intermediate_file)
|
163 |
+
os.rename(intermediate_file, bin_file) # atomic
|
164 |
+
|
165 |
+
# Load.
|
166 |
+
if verbose:
|
167 |
+
print('Loading... ', end='', flush=True)
|
168 |
+
plugin = tf.load_op_library(bin_file)
|
169 |
+
|
170 |
+
# Add to cache.
|
171 |
+
_plugin_cache[cuda_file] = plugin
|
172 |
+
if verbose:
|
173 |
+
print('Done.', flush=True)
|
174 |
+
return plugin
|
175 |
+
|
176 |
+
except:
|
177 |
+
if verbose:
|
178 |
+
print('Failed!', flush=True)
|
179 |
+
raise
|
180 |
+
|
181 |
+
#----------------------------------------------------------------------------
|
PTI/models/StyleCLIP/global_directions/dnnlib/tflib/network.py
ADDED
@@ -0,0 +1,781 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
"""Helper for managing networks."""
|
10 |
+
|
11 |
+
import types
|
12 |
+
import inspect
|
13 |
+
import re
|
14 |
+
import uuid
|
15 |
+
import sys
|
16 |
+
import copy
|
17 |
+
import numpy as np
|
18 |
+
import tensorflow as tf
|
19 |
+
|
20 |
+
from collections import OrderedDict
|
21 |
+
from typing import Any, List, Tuple, Union, Callable
|
22 |
+
|
23 |
+
from . import tfutil
|
24 |
+
from .. import util
|
25 |
+
|
26 |
+
from .tfutil import TfExpression, TfExpressionEx
|
27 |
+
|
28 |
+
# pylint: disable=protected-access
|
29 |
+
# pylint: disable=attribute-defined-outside-init
|
30 |
+
# pylint: disable=too-many-public-methods
|
31 |
+
|
32 |
+
_import_handlers = [] # Custom import handlers for dealing with legacy data in pickle import.
|
33 |
+
_import_module_src = dict() # Source code for temporary modules created during pickle import.
|
34 |
+
|
35 |
+
|
36 |
+
def import_handler(handler_func):
|
37 |
+
"""Function decorator for declaring custom import handlers."""
|
38 |
+
_import_handlers.append(handler_func)
|
39 |
+
return handler_func
|
40 |
+
|
41 |
+
|
42 |
+
class Network:
|
43 |
+
"""Generic network abstraction.
|
44 |
+
|
45 |
+
Acts as a convenience wrapper for a parameterized network construction
|
46 |
+
function, providing several utility methods and convenient access to
|
47 |
+
the inputs/outputs/weights.
|
48 |
+
|
49 |
+
Network objects can be safely pickled and unpickled for long-term
|
50 |
+
archival purposes. The pickling works reliably as long as the underlying
|
51 |
+
network construction function is defined in a standalone Python module
|
52 |
+
that has no side effects or application-specific imports.
|
53 |
+
|
54 |
+
Args:
|
55 |
+
name: Network name. Used to select TensorFlow name and variable scopes. Defaults to build func name if None.
|
56 |
+
func_name: Fully qualified name of the underlying network construction function, or a top-level function object.
|
57 |
+
static_kwargs: Keyword arguments to be passed in to the network construction function.
|
58 |
+
"""
|
59 |
+
|
60 |
+
def __init__(self, name: str = None, func_name: Any = None, **static_kwargs):
|
61 |
+
# Locate the user-specified build function.
|
62 |
+
assert isinstance(func_name, str) or util.is_top_level_function(func_name)
|
63 |
+
if util.is_top_level_function(func_name):
|
64 |
+
func_name = util.get_top_level_function_name(func_name)
|
65 |
+
module, func_name = util.get_module_from_obj_name(func_name)
|
66 |
+
func = util.get_obj_from_module(module, func_name)
|
67 |
+
|
68 |
+
# Dig up source code for the module containing the build function.
|
69 |
+
module_src = _import_module_src.get(module, None)
|
70 |
+
if module_src is None:
|
71 |
+
module_src = inspect.getsource(module)
|
72 |
+
|
73 |
+
# Initialize fields.
|
74 |
+
self._init_fields(name=(name or func_name), static_kwargs=static_kwargs, build_func=func, build_func_name=func_name, build_module_src=module_src)
|
75 |
+
|
76 |
+
def _init_fields(self, name: str, static_kwargs: dict, build_func: Callable, build_func_name: str, build_module_src: str) -> None:
|
77 |
+
tfutil.assert_tf_initialized()
|
78 |
+
assert isinstance(name, str)
|
79 |
+
assert len(name) >= 1
|
80 |
+
assert re.fullmatch(r"[A-Za-z0-9_.\\-]*", name)
|
81 |
+
assert isinstance(static_kwargs, dict)
|
82 |
+
assert util.is_pickleable(static_kwargs)
|
83 |
+
assert callable(build_func)
|
84 |
+
assert isinstance(build_func_name, str)
|
85 |
+
assert isinstance(build_module_src, str)
|
86 |
+
|
87 |
+
# Choose TensorFlow name scope.
|
88 |
+
with tf.name_scope(None):
|
89 |
+
scope = tf.get_default_graph().unique_name(name, mark_as_used=True)
|
90 |
+
|
91 |
+
# Query current TensorFlow device.
|
92 |
+
with tfutil.absolute_name_scope(scope), tf.control_dependencies(None):
|
93 |
+
device = tf.no_op(name="_QueryDevice").device
|
94 |
+
|
95 |
+
# Immutable state.
|
96 |
+
self._name = name
|
97 |
+
self._scope = scope
|
98 |
+
self._device = device
|
99 |
+
self._static_kwargs = util.EasyDict(copy.deepcopy(static_kwargs))
|
100 |
+
self._build_func = build_func
|
101 |
+
self._build_func_name = build_func_name
|
102 |
+
self._build_module_src = build_module_src
|
103 |
+
|
104 |
+
# State before _init_graph().
|
105 |
+
self._var_inits = dict() # var_name => initial_value, set to None by _init_graph()
|
106 |
+
self._all_inits_known = False # Do we know for sure that _var_inits covers all the variables?
|
107 |
+
self._components = None # subnet_name => Network, None if the components are not known yet
|
108 |
+
|
109 |
+
# Initialized by _init_graph().
|
110 |
+
self._input_templates = None
|
111 |
+
self._output_templates = None
|
112 |
+
self._own_vars = None
|
113 |
+
|
114 |
+
# Cached values initialized the respective methods.
|
115 |
+
self._input_shapes = None
|
116 |
+
self._output_shapes = None
|
117 |
+
self._input_names = None
|
118 |
+
self._output_names = None
|
119 |
+
self._vars = None
|
120 |
+
self._trainables = None
|
121 |
+
self._var_global_to_local = None
|
122 |
+
self._run_cache = dict()
|
123 |
+
|
124 |
+
def _init_graph(self) -> None:
|
125 |
+
assert self._var_inits is not None
|
126 |
+
assert self._input_templates is None
|
127 |
+
assert self._output_templates is None
|
128 |
+
assert self._own_vars is None
|
129 |
+
|
130 |
+
# Initialize components.
|
131 |
+
if self._components is None:
|
132 |
+
self._components = util.EasyDict()
|
133 |
+
|
134 |
+
# Choose build func kwargs.
|
135 |
+
build_kwargs = dict(self.static_kwargs)
|
136 |
+
build_kwargs["is_template_graph"] = True
|
137 |
+
build_kwargs["components"] = self._components
|
138 |
+
|
139 |
+
# Override scope and device, and ignore surrounding control dependencies.
|
140 |
+
with tfutil.absolute_variable_scope(self.scope, reuse=False), tfutil.absolute_name_scope(self.scope), tf.device(self.device), tf.control_dependencies(None):
|
141 |
+
assert tf.get_variable_scope().name == self.scope
|
142 |
+
assert tf.get_default_graph().get_name_scope() == self.scope
|
143 |
+
|
144 |
+
# Create input templates.
|
145 |
+
self._input_templates = []
|
146 |
+
for param in inspect.signature(self._build_func).parameters.values():
|
147 |
+
if param.kind == param.POSITIONAL_OR_KEYWORD and param.default is param.empty:
|
148 |
+
self._input_templates.append(tf.placeholder(tf.float32, name=param.name))
|
149 |
+
|
150 |
+
# Call build func.
|
151 |
+
out_expr = self._build_func(*self._input_templates, **build_kwargs)
|
152 |
+
|
153 |
+
# Collect output templates and variables.
|
154 |
+
assert tfutil.is_tf_expression(out_expr) or isinstance(out_expr, tuple)
|
155 |
+
self._output_templates = [out_expr] if tfutil.is_tf_expression(out_expr) else list(out_expr)
|
156 |
+
self._own_vars = OrderedDict((var.name[len(self.scope) + 1:].split(":")[0], var) for var in tf.global_variables(self.scope + "/"))
|
157 |
+
|
158 |
+
# Check for errors.
|
159 |
+
if len(self._input_templates) == 0:
|
160 |
+
raise ValueError("Network build func did not list any inputs.")
|
161 |
+
if len(self._output_templates) == 0:
|
162 |
+
raise ValueError("Network build func did not return any outputs.")
|
163 |
+
if any(not tfutil.is_tf_expression(t) for t in self._output_templates):
|
164 |
+
raise ValueError("Network outputs must be TensorFlow expressions.")
|
165 |
+
if any(t.shape.ndims is None for t in self._input_templates):
|
166 |
+
raise ValueError("Network input shapes not defined. Please call x.set_shape() for each input.")
|
167 |
+
if any(t.shape.ndims is None for t in self._output_templates):
|
168 |
+
raise ValueError("Network output shapes not defined. Please call x.set_shape() where applicable.")
|
169 |
+
if any(not isinstance(comp, Network) for comp in self._components.values()):
|
170 |
+
raise ValueError("Components of a Network must be Networks themselves.")
|
171 |
+
if len(self._components) != len(set(comp.name for comp in self._components.values())):
|
172 |
+
raise ValueError("Components of a Network must have unique names.")
|
173 |
+
|
174 |
+
# Initialize variables.
|
175 |
+
if len(self._var_inits):
|
176 |
+
tfutil.set_vars({self._get_vars()[name]: value for name, value in self._var_inits.items() if name in self._get_vars()})
|
177 |
+
remaining_inits = [var.initializer for name, var in self._own_vars.items() if name not in self._var_inits]
|
178 |
+
if self._all_inits_known:
|
179 |
+
assert len(remaining_inits) == 0
|
180 |
+
else:
|
181 |
+
tfutil.run(remaining_inits)
|
182 |
+
self._var_inits = None
|
183 |
+
|
184 |
+
@property
|
185 |
+
def name(self):
|
186 |
+
"""User-specified name string."""
|
187 |
+
return self._name
|
188 |
+
|
189 |
+
@property
|
190 |
+
def scope(self):
|
191 |
+
"""Unique TensorFlow scope containing template graph and variables, derived from the user-specified name."""
|
192 |
+
return self._scope
|
193 |
+
|
194 |
+
@property
|
195 |
+
def device(self):
|
196 |
+
"""Name of the TensorFlow device that the weights of this network reside on. Determined by the current device at construction time."""
|
197 |
+
return self._device
|
198 |
+
|
199 |
+
@property
|
200 |
+
def static_kwargs(self):
|
201 |
+
"""EasyDict of arguments passed to the user-supplied build func."""
|
202 |
+
return copy.deepcopy(self._static_kwargs)
|
203 |
+
|
204 |
+
@property
|
205 |
+
def components(self):
|
206 |
+
"""EasyDict of sub-networks created by the build func."""
|
207 |
+
return copy.copy(self._get_components())
|
208 |
+
|
209 |
+
def _get_components(self):
|
210 |
+
if self._components is None:
|
211 |
+
self._init_graph()
|
212 |
+
assert self._components is not None
|
213 |
+
return self._components
|
214 |
+
|
215 |
+
@property
|
216 |
+
def input_shapes(self):
|
217 |
+
"""List of input tensor shapes, including minibatch dimension."""
|
218 |
+
if self._input_shapes is None:
|
219 |
+
self._input_shapes = [t.shape.as_list() for t in self.input_templates]
|
220 |
+
return copy.deepcopy(self._input_shapes)
|
221 |
+
|
222 |
+
@property
|
223 |
+
def output_shapes(self):
|
224 |
+
"""List of output tensor shapes, including minibatch dimension."""
|
225 |
+
if self._output_shapes is None:
|
226 |
+
self._output_shapes = [t.shape.as_list() for t in self.output_templates]
|
227 |
+
return copy.deepcopy(self._output_shapes)
|
228 |
+
|
229 |
+
@property
|
230 |
+
def input_shape(self):
|
231 |
+
"""Short-hand for input_shapes[0]."""
|
232 |
+
return self.input_shapes[0]
|
233 |
+
|
234 |
+
@property
|
235 |
+
def output_shape(self):
|
236 |
+
"""Short-hand for output_shapes[0]."""
|
237 |
+
return self.output_shapes[0]
|
238 |
+
|
239 |
+
@property
|
240 |
+
def num_inputs(self):
|
241 |
+
"""Number of input tensors."""
|
242 |
+
return len(self.input_shapes)
|
243 |
+
|
244 |
+
@property
|
245 |
+
def num_outputs(self):
|
246 |
+
"""Number of output tensors."""
|
247 |
+
return len(self.output_shapes)
|
248 |
+
|
249 |
+
@property
|
250 |
+
def input_names(self):
|
251 |
+
"""Name string for each input."""
|
252 |
+
if self._input_names is None:
|
253 |
+
self._input_names = [t.name.split("/")[-1].split(":")[0] for t in self.input_templates]
|
254 |
+
return copy.copy(self._input_names)
|
255 |
+
|
256 |
+
@property
|
257 |
+
def output_names(self):
|
258 |
+
"""Name string for each output."""
|
259 |
+
if self._output_names is None:
|
260 |
+
self._output_names = [t.name.split("/")[-1].split(":")[0] for t in self.output_templates]
|
261 |
+
return copy.copy(self._output_names)
|
262 |
+
|
263 |
+
@property
|
264 |
+
def input_templates(self):
|
265 |
+
"""Input placeholders in the template graph."""
|
266 |
+
if self._input_templates is None:
|
267 |
+
self._init_graph()
|
268 |
+
assert self._input_templates is not None
|
269 |
+
return copy.copy(self._input_templates)
|
270 |
+
|
271 |
+
@property
|
272 |
+
def output_templates(self):
|
273 |
+
"""Output tensors in the template graph."""
|
274 |
+
if self._output_templates is None:
|
275 |
+
self._init_graph()
|
276 |
+
assert self._output_templates is not None
|
277 |
+
return copy.copy(self._output_templates)
|
278 |
+
|
279 |
+
@property
|
280 |
+
def own_vars(self):
|
281 |
+
"""Variables defined by this network (local_name => var), excluding sub-networks."""
|
282 |
+
return copy.copy(self._get_own_vars())
|
283 |
+
|
284 |
+
def _get_own_vars(self):
|
285 |
+
if self._own_vars is None:
|
286 |
+
self._init_graph()
|
287 |
+
assert self._own_vars is not None
|
288 |
+
return self._own_vars
|
289 |
+
|
290 |
+
@property
|
291 |
+
def vars(self):
|
292 |
+
"""All variables (local_name => var)."""
|
293 |
+
return copy.copy(self._get_vars())
|
294 |
+
|
295 |
+
def _get_vars(self):
|
296 |
+
if self._vars is None:
|
297 |
+
self._vars = OrderedDict(self._get_own_vars())
|
298 |
+
for comp in self._get_components().values():
|
299 |
+
self._vars.update((comp.name + "/" + name, var) for name, var in comp._get_vars().items())
|
300 |
+
return self._vars
|
301 |
+
|
302 |
+
@property
|
303 |
+
def trainables(self):
|
304 |
+
"""All trainable variables (local_name => var)."""
|
305 |
+
return copy.copy(self._get_trainables())
|
306 |
+
|
307 |
+
def _get_trainables(self):
|
308 |
+
if self._trainables is None:
|
309 |
+
self._trainables = OrderedDict((name, var) for name, var in self.vars.items() if var.trainable)
|
310 |
+
return self._trainables
|
311 |
+
|
312 |
+
@property
|
313 |
+
def var_global_to_local(self):
|
314 |
+
"""Mapping from variable global names to local names."""
|
315 |
+
return copy.copy(self._get_var_global_to_local())
|
316 |
+
|
317 |
+
def _get_var_global_to_local(self):
|
318 |
+
if self._var_global_to_local is None:
|
319 |
+
self._var_global_to_local = OrderedDict((var.name.split(":")[0], name) for name, var in self.vars.items())
|
320 |
+
return self._var_global_to_local
|
321 |
+
|
322 |
+
def reset_own_vars(self) -> None:
|
323 |
+
"""Re-initialize all variables of this network, excluding sub-networks."""
|
324 |
+
if self._var_inits is None or self._components is None:
|
325 |
+
tfutil.run([var.initializer for var in self._get_own_vars().values()])
|
326 |
+
else:
|
327 |
+
self._var_inits.clear()
|
328 |
+
self._all_inits_known = False
|
329 |
+
|
330 |
+
def reset_vars(self) -> None:
|
331 |
+
"""Re-initialize all variables of this network, including sub-networks."""
|
332 |
+
if self._var_inits is None:
|
333 |
+
tfutil.run([var.initializer for var in self._get_vars().values()])
|
334 |
+
else:
|
335 |
+
self._var_inits.clear()
|
336 |
+
self._all_inits_known = False
|
337 |
+
if self._components is not None:
|
338 |
+
for comp in self._components.values():
|
339 |
+
comp.reset_vars()
|
340 |
+
|
341 |
+
def reset_trainables(self) -> None:
|
342 |
+
"""Re-initialize all trainable variables of this network, including sub-networks."""
|
343 |
+
tfutil.run([var.initializer for var in self._get_trainables().values()])
|
344 |
+
|
345 |
+
def get_output_for(self, *in_expr: TfExpression, return_as_list: bool = False, **dynamic_kwargs) -> Union[TfExpression, List[TfExpression]]:
|
346 |
+
"""Construct TensorFlow expression(s) for the output(s) of this network, given the input expression(s).
|
347 |
+
The graph is placed on the current TensorFlow device."""
|
348 |
+
assert len(in_expr) == self.num_inputs
|
349 |
+
assert not all(expr is None for expr in in_expr)
|
350 |
+
self._get_vars() # ensure that all variables have been created
|
351 |
+
|
352 |
+
# Choose build func kwargs.
|
353 |
+
build_kwargs = dict(self.static_kwargs)
|
354 |
+
build_kwargs.update(dynamic_kwargs)
|
355 |
+
build_kwargs["is_template_graph"] = False
|
356 |
+
build_kwargs["components"] = self._components
|
357 |
+
|
358 |
+
# Build TensorFlow graph to evaluate the network.
|
359 |
+
with tfutil.absolute_variable_scope(self.scope, reuse=True), tf.name_scope(self.name):
|
360 |
+
assert tf.get_variable_scope().name == self.scope
|
361 |
+
valid_inputs = [expr for expr in in_expr if expr is not None]
|
362 |
+
final_inputs = []
|
363 |
+
for expr, name, shape in zip(in_expr, self.input_names, self.input_shapes):
|
364 |
+
if expr is not None:
|
365 |
+
expr = tf.identity(expr, name=name)
|
366 |
+
else:
|
367 |
+
expr = tf.zeros([tf.shape(valid_inputs[0])[0]] + shape[1:], name=name)
|
368 |
+
final_inputs.append(expr)
|
369 |
+
out_expr = self._build_func(*final_inputs, **build_kwargs)
|
370 |
+
|
371 |
+
# Propagate input shapes back to the user-specified expressions.
|
372 |
+
for expr, final in zip(in_expr, final_inputs):
|
373 |
+
if isinstance(expr, tf.Tensor):
|
374 |
+
expr.set_shape(final.shape)
|
375 |
+
|
376 |
+
# Express outputs in the desired format.
|
377 |
+
assert tfutil.is_tf_expression(out_expr) or isinstance(out_expr, tuple)
|
378 |
+
if return_as_list:
|
379 |
+
out_expr = [out_expr] if tfutil.is_tf_expression(out_expr) else list(out_expr)
|
380 |
+
return out_expr
|
381 |
+
|
382 |
+
def get_var_local_name(self, var_or_global_name: Union[TfExpression, str]) -> str:
|
383 |
+
"""Get the local name of a given variable, without any surrounding name scopes."""
|
384 |
+
assert tfutil.is_tf_expression(var_or_global_name) or isinstance(var_or_global_name, str)
|
385 |
+
global_name = var_or_global_name if isinstance(var_or_global_name, str) else var_or_global_name.name
|
386 |
+
return self._get_var_global_to_local()[global_name]
|
387 |
+
|
388 |
+
def find_var(self, var_or_local_name: Union[TfExpression, str]) -> TfExpression:
|
389 |
+
"""Find variable by local or global name."""
|
390 |
+
assert tfutil.is_tf_expression(var_or_local_name) or isinstance(var_or_local_name, str)
|
391 |
+
return self._get_vars()[var_or_local_name] if isinstance(var_or_local_name, str) else var_or_local_name
|
392 |
+
|
393 |
+
def get_var(self, var_or_local_name: Union[TfExpression, str]) -> np.ndarray:
|
394 |
+
"""Get the value of a given variable as NumPy array.
|
395 |
+
Note: This method is very inefficient -- prefer to use tflib.run(list_of_vars) whenever possible."""
|
396 |
+
return self.find_var(var_or_local_name).eval()
|
397 |
+
|
398 |
+
def set_var(self, var_or_local_name: Union[TfExpression, str], new_value: Union[int, float, np.ndarray]) -> None:
|
399 |
+
"""Set the value of a given variable based on the given NumPy array.
|
400 |
+
Note: This method is very inefficient -- prefer to use tflib.set_vars() whenever possible."""
|
401 |
+
tfutil.set_vars({self.find_var(var_or_local_name): new_value})
|
402 |
+
|
403 |
+
def __getstate__(self) -> dict:
|
404 |
+
"""Pickle export."""
|
405 |
+
state = dict()
|
406 |
+
state["version"] = 5
|
407 |
+
state["name"] = self.name
|
408 |
+
state["static_kwargs"] = dict(self.static_kwargs)
|
409 |
+
state["components"] = dict(self.components)
|
410 |
+
state["build_module_src"] = self._build_module_src
|
411 |
+
state["build_func_name"] = self._build_func_name
|
412 |
+
state["variables"] = list(zip(self._get_own_vars().keys(), tfutil.run(list(self._get_own_vars().values()))))
|
413 |
+
state["input_shapes"] = self.input_shapes
|
414 |
+
state["output_shapes"] = self.output_shapes
|
415 |
+
state["input_names"] = self.input_names
|
416 |
+
state["output_names"] = self.output_names
|
417 |
+
return state
|
418 |
+
|
419 |
+
def __setstate__(self, state: dict) -> None:
|
420 |
+
"""Pickle import."""
|
421 |
+
|
422 |
+
# Execute custom import handlers.
|
423 |
+
for handler in _import_handlers:
|
424 |
+
state = handler(state)
|
425 |
+
|
426 |
+
# Get basic fields.
|
427 |
+
assert state["version"] in [2, 3, 4, 5]
|
428 |
+
name = state["name"]
|
429 |
+
static_kwargs = state["static_kwargs"]
|
430 |
+
build_module_src = state["build_module_src"]
|
431 |
+
build_func_name = state["build_func_name"]
|
432 |
+
|
433 |
+
# Create temporary module from the imported source code.
|
434 |
+
module_name = "_tflib_network_import_" + uuid.uuid4().hex
|
435 |
+
module = types.ModuleType(module_name)
|
436 |
+
sys.modules[module_name] = module
|
437 |
+
_import_module_src[module] = build_module_src
|
438 |
+
exec(build_module_src, module.__dict__) # pylint: disable=exec-used
|
439 |
+
build_func = util.get_obj_from_module(module, build_func_name)
|
440 |
+
|
441 |
+
# Initialize fields.
|
442 |
+
self._init_fields(name=name, static_kwargs=static_kwargs, build_func=build_func, build_func_name=build_func_name, build_module_src=build_module_src)
|
443 |
+
self._var_inits.update(copy.deepcopy(state["variables"]))
|
444 |
+
self._all_inits_known = True
|
445 |
+
self._components = util.EasyDict(state.get("components", {}))
|
446 |
+
self._input_shapes = copy.deepcopy(state.get("input_shapes", None))
|
447 |
+
self._output_shapes = copy.deepcopy(state.get("output_shapes", None))
|
448 |
+
self._input_names = copy.deepcopy(state.get("input_names", None))
|
449 |
+
self._output_names = copy.deepcopy(state.get("output_names", None))
|
450 |
+
|
451 |
+
def clone(self, name: str = None, **new_static_kwargs) -> "Network":
|
452 |
+
"""Create a clone of this network with its own copy of the variables."""
|
453 |
+
static_kwargs = dict(self.static_kwargs)
|
454 |
+
static_kwargs.update(new_static_kwargs)
|
455 |
+
net = object.__new__(Network)
|
456 |
+
net._init_fields(name=(name or self.name), static_kwargs=static_kwargs, build_func=self._build_func, build_func_name=self._build_func_name, build_module_src=self._build_module_src)
|
457 |
+
net.copy_vars_from(self)
|
458 |
+
return net
|
459 |
+
|
460 |
+
def copy_own_vars_from(self, src_net: "Network") -> None:
|
461 |
+
"""Copy the values of all variables from the given network, excluding sub-networks."""
|
462 |
+
|
463 |
+
# Source has unknown variables or unknown components => init now.
|
464 |
+
if (src_net._var_inits is not None and not src_net._all_inits_known) or src_net._components is None:
|
465 |
+
src_net._get_vars()
|
466 |
+
|
467 |
+
# Both networks are inited => copy directly.
|
468 |
+
if src_net._var_inits is None and self._var_inits is None:
|
469 |
+
names = [name for name in self._get_own_vars().keys() if name in src_net._get_own_vars()]
|
470 |
+
tfutil.set_vars(tfutil.run({self._get_vars()[name]: src_net._get_vars()[name] for name in names}))
|
471 |
+
return
|
472 |
+
|
473 |
+
# Read from source.
|
474 |
+
if src_net._var_inits is None:
|
475 |
+
value_dict = tfutil.run(src_net._get_own_vars())
|
476 |
+
else:
|
477 |
+
value_dict = src_net._var_inits
|
478 |
+
|
479 |
+
# Write to destination.
|
480 |
+
if self._var_inits is None:
|
481 |
+
tfutil.set_vars({self._get_vars()[name]: value for name, value in value_dict.items() if name in self._get_vars()})
|
482 |
+
else:
|
483 |
+
self._var_inits.update(value_dict)
|
484 |
+
|
485 |
+
def copy_vars_from(self, src_net: "Network") -> None:
|
486 |
+
"""Copy the values of all variables from the given network, including sub-networks."""
|
487 |
+
|
488 |
+
# Source has unknown variables or unknown components => init now.
|
489 |
+
if (src_net._var_inits is not None and not src_net._all_inits_known) or src_net._components is None:
|
490 |
+
src_net._get_vars()
|
491 |
+
|
492 |
+
# Source is inited, but destination components have not been created yet => set as initial values.
|
493 |
+
if src_net._var_inits is None and self._components is None:
|
494 |
+
self._var_inits.update(tfutil.run(src_net._get_vars()))
|
495 |
+
return
|
496 |
+
|
497 |
+
# Destination has unknown components => init now.
|
498 |
+
if self._components is None:
|
499 |
+
self._get_vars()
|
500 |
+
|
501 |
+
# Both networks are inited => copy directly.
|
502 |
+
if src_net._var_inits is None and self._var_inits is None:
|
503 |
+
names = [name for name in self._get_vars().keys() if name in src_net._get_vars()]
|
504 |
+
tfutil.set_vars(tfutil.run({self._get_vars()[name]: src_net._get_vars()[name] for name in names}))
|
505 |
+
return
|
506 |
+
|
507 |
+
# Copy recursively, component by component.
|
508 |
+
self.copy_own_vars_from(src_net)
|
509 |
+
for name, src_comp in src_net._components.items():
|
510 |
+
if name in self._components:
|
511 |
+
self._components[name].copy_vars_from(src_comp)
|
512 |
+
|
513 |
+
def copy_trainables_from(self, src_net: "Network") -> None:
|
514 |
+
"""Copy the values of all trainable variables from the given network, including sub-networks."""
|
515 |
+
names = [name for name in self._get_trainables().keys() if name in src_net._get_trainables()]
|
516 |
+
tfutil.set_vars(tfutil.run({self._get_vars()[name]: src_net._get_vars()[name] for name in names}))
|
517 |
+
|
518 |
+
def convert(self, new_func_name: str, new_name: str = None, **new_static_kwargs) -> "Network":
|
519 |
+
"""Create new network with the given parameters, and copy all variables from this network."""
|
520 |
+
if new_name is None:
|
521 |
+
new_name = self.name
|
522 |
+
static_kwargs = dict(self.static_kwargs)
|
523 |
+
static_kwargs.update(new_static_kwargs)
|
524 |
+
net = Network(name=new_name, func_name=new_func_name, **static_kwargs)
|
525 |
+
net.copy_vars_from(self)
|
526 |
+
return net
|
527 |
+
|
528 |
+
def setup_as_moving_average_of(self, src_net: "Network", beta: TfExpressionEx = 0.99, beta_nontrainable: TfExpressionEx = 0.0) -> tf.Operation:
|
529 |
+
"""Construct a TensorFlow op that updates the variables of this network
|
530 |
+
to be slightly closer to those of the given network."""
|
531 |
+
with tfutil.absolute_name_scope(self.scope + "/_MovingAvg"):
|
532 |
+
ops = []
|
533 |
+
for name, var in self._get_vars().items():
|
534 |
+
if name in src_net._get_vars():
|
535 |
+
cur_beta = beta if var.trainable else beta_nontrainable
|
536 |
+
new_value = tfutil.lerp(src_net._get_vars()[name], var, cur_beta)
|
537 |
+
ops.append(var.assign(new_value))
|
538 |
+
return tf.group(*ops)
|
539 |
+
|
540 |
+
def run(self,
|
541 |
+
*in_arrays: Tuple[Union[np.ndarray, None], ...],
|
542 |
+
input_transform: dict = None,
|
543 |
+
output_transform: dict = None,
|
544 |
+
return_as_list: bool = False,
|
545 |
+
print_progress: bool = False,
|
546 |
+
minibatch_size: int = None,
|
547 |
+
num_gpus: int = 1,
|
548 |
+
assume_frozen: bool = False,
|
549 |
+
**dynamic_kwargs) -> Union[np.ndarray, Tuple[np.ndarray, ...], List[np.ndarray]]:
|
550 |
+
"""Run this network for the given NumPy array(s), and return the output(s) as NumPy array(s).
|
551 |
+
|
552 |
+
Args:
|
553 |
+
input_transform: A dict specifying a custom transformation to be applied to the input tensor(s) before evaluating the network.
|
554 |
+
The dict must contain a 'func' field that points to a top-level function. The function is called with the input
|
555 |
+
TensorFlow expression(s) as positional arguments. Any remaining fields of the dict will be passed in as kwargs.
|
556 |
+
output_transform: A dict specifying a custom transformation to be applied to the output tensor(s) after evaluating the network.
|
557 |
+
The dict must contain a 'func' field that points to a top-level function. The function is called with the output
|
558 |
+
TensorFlow expression(s) as positional arguments. Any remaining fields of the dict will be passed in as kwargs.
|
559 |
+
return_as_list: True = return a list of NumPy arrays, False = return a single NumPy array, or a tuple if there are multiple outputs.
|
560 |
+
print_progress: Print progress to the console? Useful for very large input arrays.
|
561 |
+
minibatch_size: Maximum minibatch size to use, None = disable batching.
|
562 |
+
num_gpus: Number of GPUs to use.
|
563 |
+
assume_frozen: Improve multi-GPU performance by assuming that the trainable parameters will remain changed between calls.
|
564 |
+
dynamic_kwargs: Additional keyword arguments to be passed into the network build function.
|
565 |
+
"""
|
566 |
+
assert len(in_arrays) == self.num_inputs
|
567 |
+
assert not all(arr is None for arr in in_arrays)
|
568 |
+
assert input_transform is None or util.is_top_level_function(input_transform["func"])
|
569 |
+
assert output_transform is None or util.is_top_level_function(output_transform["func"])
|
570 |
+
output_transform, dynamic_kwargs = _handle_legacy_output_transforms(output_transform, dynamic_kwargs)
|
571 |
+
num_items = in_arrays[0].shape[0]
|
572 |
+
if minibatch_size is None:
|
573 |
+
minibatch_size = num_items
|
574 |
+
|
575 |
+
# Construct unique hash key from all arguments that affect the TensorFlow graph.
|
576 |
+
key = dict(input_transform=input_transform, output_transform=output_transform, num_gpus=num_gpus, assume_frozen=assume_frozen, dynamic_kwargs=dynamic_kwargs)
|
577 |
+
def unwind_key(obj):
|
578 |
+
if isinstance(obj, dict):
|
579 |
+
return [(key, unwind_key(value)) for key, value in sorted(obj.items())]
|
580 |
+
if callable(obj):
|
581 |
+
return util.get_top_level_function_name(obj)
|
582 |
+
return obj
|
583 |
+
key = repr(unwind_key(key))
|
584 |
+
|
585 |
+
# Build graph.
|
586 |
+
if key not in self._run_cache:
|
587 |
+
with tfutil.absolute_name_scope(self.scope + "/_Run"), tf.control_dependencies(None):
|
588 |
+
with tf.device("/cpu:0"):
|
589 |
+
in_expr = [tf.placeholder(tf.float32, name=name) for name in self.input_names]
|
590 |
+
in_split = list(zip(*[tf.split(x, num_gpus) for x in in_expr]))
|
591 |
+
|
592 |
+
out_split = []
|
593 |
+
for gpu in range(num_gpus):
|
594 |
+
with tf.device(self.device if num_gpus == 1 else "/gpu:%d" % gpu):
|
595 |
+
net_gpu = self.clone() if assume_frozen else self
|
596 |
+
in_gpu = in_split[gpu]
|
597 |
+
|
598 |
+
if input_transform is not None:
|
599 |
+
in_kwargs = dict(input_transform)
|
600 |
+
in_gpu = in_kwargs.pop("func")(*in_gpu, **in_kwargs)
|
601 |
+
in_gpu = [in_gpu] if tfutil.is_tf_expression(in_gpu) else list(in_gpu)
|
602 |
+
|
603 |
+
assert len(in_gpu) == self.num_inputs
|
604 |
+
out_gpu = net_gpu.get_output_for(*in_gpu, return_as_list=True, **dynamic_kwargs)
|
605 |
+
|
606 |
+
if output_transform is not None:
|
607 |
+
out_kwargs = dict(output_transform)
|
608 |
+
out_gpu = out_kwargs.pop("func")(*out_gpu, **out_kwargs)
|
609 |
+
out_gpu = [out_gpu] if tfutil.is_tf_expression(out_gpu) else list(out_gpu)
|
610 |
+
|
611 |
+
assert len(out_gpu) == self.num_outputs
|
612 |
+
out_split.append(out_gpu)
|
613 |
+
|
614 |
+
with tf.device("/cpu:0"):
|
615 |
+
out_expr = [tf.concat(outputs, axis=0) for outputs in zip(*out_split)]
|
616 |
+
self._run_cache[key] = in_expr, out_expr
|
617 |
+
|
618 |
+
# Run minibatches.
|
619 |
+
in_expr, out_expr = self._run_cache[key]
|
620 |
+
out_arrays = [np.empty([num_items] + expr.shape.as_list()[1:], expr.dtype.name) for expr in out_expr]
|
621 |
+
|
622 |
+
for mb_begin in range(0, num_items, minibatch_size):
|
623 |
+
if print_progress:
|
624 |
+
print("\r%d / %d" % (mb_begin, num_items), end="")
|
625 |
+
|
626 |
+
mb_end = min(mb_begin + minibatch_size, num_items)
|
627 |
+
mb_num = mb_end - mb_begin
|
628 |
+
mb_in = [src[mb_begin : mb_end] if src is not None else np.zeros([mb_num] + shape[1:]) for src, shape in zip(in_arrays, self.input_shapes)]
|
629 |
+
mb_out = tf.get_default_session().run(out_expr, dict(zip(in_expr, mb_in)))
|
630 |
+
|
631 |
+
for dst, src in zip(out_arrays, mb_out):
|
632 |
+
dst[mb_begin: mb_end] = src
|
633 |
+
|
634 |
+
# Done.
|
635 |
+
if print_progress:
|
636 |
+
print("\r%d / %d" % (num_items, num_items))
|
637 |
+
|
638 |
+
if not return_as_list:
|
639 |
+
out_arrays = out_arrays[0] if len(out_arrays) == 1 else tuple(out_arrays)
|
640 |
+
return out_arrays
|
641 |
+
|
642 |
+
def list_ops(self) -> List[TfExpression]:
|
643 |
+
_ = self.output_templates # ensure that the template graph has been created
|
644 |
+
include_prefix = self.scope + "/"
|
645 |
+
exclude_prefix = include_prefix + "_"
|
646 |
+
ops = tf.get_default_graph().get_operations()
|
647 |
+
ops = [op for op in ops if op.name.startswith(include_prefix)]
|
648 |
+
ops = [op for op in ops if not op.name.startswith(exclude_prefix)]
|
649 |
+
return ops
|
650 |
+
|
651 |
+
def list_layers(self) -> List[Tuple[str, TfExpression, List[TfExpression]]]:
|
652 |
+
"""Returns a list of (layer_name, output_expr, trainable_vars) tuples corresponding to
|
653 |
+
individual layers of the network. Mainly intended to be used for reporting."""
|
654 |
+
layers = []
|
655 |
+
|
656 |
+
def recurse(scope, parent_ops, parent_vars, level):
|
657 |
+
if len(parent_ops) == 0 and len(parent_vars) == 0:
|
658 |
+
return
|
659 |
+
|
660 |
+
# Ignore specific patterns.
|
661 |
+
if any(p in scope for p in ["/Shape", "/strided_slice", "/Cast", "/concat", "/Assign"]):
|
662 |
+
return
|
663 |
+
|
664 |
+
# Filter ops and vars by scope.
|
665 |
+
global_prefix = scope + "/"
|
666 |
+
local_prefix = global_prefix[len(self.scope) + 1:]
|
667 |
+
cur_ops = [op for op in parent_ops if op.name.startswith(global_prefix) or op.name == global_prefix[:-1]]
|
668 |
+
cur_vars = [(name, var) for name, var in parent_vars if name.startswith(local_prefix) or name == local_prefix[:-1]]
|
669 |
+
if not cur_ops and not cur_vars:
|
670 |
+
return
|
671 |
+
|
672 |
+
# Filter out all ops related to variables.
|
673 |
+
for var in [op for op in cur_ops if op.type.startswith("Variable")]:
|
674 |
+
var_prefix = var.name + "/"
|
675 |
+
cur_ops = [op for op in cur_ops if not op.name.startswith(var_prefix)]
|
676 |
+
|
677 |
+
# Scope does not contain ops as immediate children => recurse deeper.
|
678 |
+
contains_direct_ops = any("/" not in op.name[len(global_prefix):] and op.type not in ["Identity", "Cast", "Transpose"] for op in cur_ops)
|
679 |
+
if (level == 0 or not contains_direct_ops) and (len(cur_ops) != 0 or len(cur_vars) != 0):
|
680 |
+
visited = set()
|
681 |
+
for rel_name in [op.name[len(global_prefix):] for op in cur_ops] + [name[len(local_prefix):] for name, _var in cur_vars]:
|
682 |
+
token = rel_name.split("/")[0]
|
683 |
+
if token not in visited:
|
684 |
+
recurse(global_prefix + token, cur_ops, cur_vars, level + 1)
|
685 |
+
visited.add(token)
|
686 |
+
return
|
687 |
+
|
688 |
+
# Report layer.
|
689 |
+
layer_name = scope[len(self.scope) + 1:]
|
690 |
+
layer_output = cur_ops[-1].outputs[0] if cur_ops else cur_vars[-1][1]
|
691 |
+
layer_trainables = [var for _name, var in cur_vars if var.trainable]
|
692 |
+
layers.append((layer_name, layer_output, layer_trainables))
|
693 |
+
|
694 |
+
recurse(self.scope, self.list_ops(), list(self._get_vars().items()), 0)
|
695 |
+
return layers
|
696 |
+
|
697 |
+
def print_layers(self, title: str = None, hide_layers_with_no_params: bool = False) -> None:
|
698 |
+
"""Print a summary table of the network structure."""
|
699 |
+
rows = [[title if title is not None else self.name, "Params", "OutputShape", "WeightShape"]]
|
700 |
+
rows += [["---"] * 4]
|
701 |
+
total_params = 0
|
702 |
+
|
703 |
+
for layer_name, layer_output, layer_trainables in self.list_layers():
|
704 |
+
num_params = sum(int(np.prod(var.shape.as_list())) for var in layer_trainables)
|
705 |
+
weights = [var for var in layer_trainables if var.name.endswith("/weight:0")]
|
706 |
+
weights.sort(key=lambda x: len(x.name))
|
707 |
+
if len(weights) == 0 and len(layer_trainables) == 1:
|
708 |
+
weights = layer_trainables
|
709 |
+
total_params += num_params
|
710 |
+
|
711 |
+
if not hide_layers_with_no_params or num_params != 0:
|
712 |
+
num_params_str = str(num_params) if num_params > 0 else "-"
|
713 |
+
output_shape_str = str(layer_output.shape)
|
714 |
+
weight_shape_str = str(weights[0].shape) if len(weights) >= 1 else "-"
|
715 |
+
rows += [[layer_name, num_params_str, output_shape_str, weight_shape_str]]
|
716 |
+
|
717 |
+
rows += [["---"] * 4]
|
718 |
+
rows += [["Total", str(total_params), "", ""]]
|
719 |
+
|
720 |
+
widths = [max(len(cell) for cell in column) for column in zip(*rows)]
|
721 |
+
print()
|
722 |
+
for row in rows:
|
723 |
+
print(" ".join(cell + " " * (width - len(cell)) for cell, width in zip(row, widths)))
|
724 |
+
print()
|
725 |
+
|
726 |
+
def setup_weight_histograms(self, title: str = None) -> None:
|
727 |
+
"""Construct summary ops to include histograms of all trainable parameters in TensorBoard."""
|
728 |
+
if title is None:
|
729 |
+
title = self.name
|
730 |
+
|
731 |
+
with tf.name_scope(None), tf.device(None), tf.control_dependencies(None):
|
732 |
+
for local_name, var in self._get_trainables().items():
|
733 |
+
if "/" in local_name:
|
734 |
+
p = local_name.split("/")
|
735 |
+
name = title + "_" + p[-1] + "/" + "_".join(p[:-1])
|
736 |
+
else:
|
737 |
+
name = title + "_toplevel/" + local_name
|
738 |
+
|
739 |
+
tf.summary.histogram(name, var)
|
740 |
+
|
741 |
+
#----------------------------------------------------------------------------
|
742 |
+
# Backwards-compatible emulation of legacy output transformation in Network.run().
|
743 |
+
|
744 |
+
_print_legacy_warning = True
|
745 |
+
|
746 |
+
def _handle_legacy_output_transforms(output_transform, dynamic_kwargs):
|
747 |
+
global _print_legacy_warning
|
748 |
+
legacy_kwargs = ["out_mul", "out_add", "out_shrink", "out_dtype"]
|
749 |
+
if not any(kwarg in dynamic_kwargs for kwarg in legacy_kwargs):
|
750 |
+
return output_transform, dynamic_kwargs
|
751 |
+
|
752 |
+
if _print_legacy_warning:
|
753 |
+
_print_legacy_warning = False
|
754 |
+
print()
|
755 |
+
print("WARNING: Old-style output transformations in Network.run() are deprecated.")
|
756 |
+
print("Consider using 'output_transform=dict(func=tflib.convert_images_to_uint8)'")
|
757 |
+
print("instead of 'out_mul=127.5, out_add=127.5, out_dtype=np.uint8'.")
|
758 |
+
print()
|
759 |
+
assert output_transform is None
|
760 |
+
|
761 |
+
new_kwargs = dict(dynamic_kwargs)
|
762 |
+
new_transform = {kwarg: new_kwargs.pop(kwarg) for kwarg in legacy_kwargs if kwarg in dynamic_kwargs}
|
763 |
+
new_transform["func"] = _legacy_output_transform_func
|
764 |
+
return new_transform, new_kwargs
|
765 |
+
|
766 |
+
def _legacy_output_transform_func(*expr, out_mul=1.0, out_add=0.0, out_shrink=1, out_dtype=None):
|
767 |
+
if out_mul != 1.0:
|
768 |
+
expr = [x * out_mul for x in expr]
|
769 |
+
|
770 |
+
if out_add != 0.0:
|
771 |
+
expr = [x + out_add for x in expr]
|
772 |
+
|
773 |
+
if out_shrink > 1:
|
774 |
+
ksize = [1, 1, out_shrink, out_shrink]
|
775 |
+
expr = [tf.nn.avg_pool(x, ksize=ksize, strides=ksize, padding="VALID", data_format="NCHW") for x in expr]
|
776 |
+
|
777 |
+
if out_dtype is not None:
|
778 |
+
if tf.as_dtype(out_dtype).is_integer:
|
779 |
+
expr = [tf.round(x) for x in expr]
|
780 |
+
expr = [tf.saturate_cast(x, out_dtype) for x in expr]
|
781 |
+
return expr
|
PTI/models/StyleCLIP/global_directions/dnnlib/tflib/ops/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
# empty
|
PTI/models/StyleCLIP/global_directions/dnnlib/tflib/ops/fused_bias_act.cu
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
//
|
3 |
+
// NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
// and proprietary rights in and to this software, related documentation
|
5 |
+
// and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
// distribution of this software and related documentation without an express
|
7 |
+
// license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
#define EIGEN_USE_GPU
|
10 |
+
#define __CUDA_INCLUDE_COMPILER_INTERNAL_HEADERS__
|
11 |
+
#include "tensorflow/core/framework/op.h"
|
12 |
+
#include "tensorflow/core/framework/op_kernel.h"
|
13 |
+
#include "tensorflow/core/framework/shape_inference.h"
|
14 |
+
#include <stdio.h>
|
15 |
+
|
16 |
+
using namespace tensorflow;
|
17 |
+
using namespace tensorflow::shape_inference;
|
18 |
+
|
19 |
+
#define OP_CHECK_CUDA_ERROR(CTX, CUDA_CALL) do { cudaError_t err = CUDA_CALL; OP_REQUIRES(CTX, err == cudaSuccess, errors::Internal(cudaGetErrorName(err))); } while (false)
|
20 |
+
|
21 |
+
//------------------------------------------------------------------------
|
22 |
+
// CUDA kernel.
|
23 |
+
|
24 |
+
template <class T>
|
25 |
+
struct FusedBiasActKernelParams
|
26 |
+
{
|
27 |
+
const T* x; // [sizeX]
|
28 |
+
const T* b; // [sizeB] or NULL
|
29 |
+
const T* xref; // [sizeX] or NULL
|
30 |
+
const T* yref; // [sizeX] or NULL
|
31 |
+
T* y; // [sizeX]
|
32 |
+
|
33 |
+
int grad;
|
34 |
+
int axis;
|
35 |
+
int act;
|
36 |
+
float alpha;
|
37 |
+
float gain;
|
38 |
+
float clamp;
|
39 |
+
|
40 |
+
int sizeX;
|
41 |
+
int sizeB;
|
42 |
+
int stepB;
|
43 |
+
int loopX;
|
44 |
+
};
|
45 |
+
|
46 |
+
template <class T>
|
47 |
+
static __global__ void FusedBiasActKernel(const FusedBiasActKernelParams<T> p)
|
48 |
+
{
|
49 |
+
const float expRange = 80.0f;
|
50 |
+
const float halfExpRange = 40.0f;
|
51 |
+
const float seluScale = 1.0507009873554804934193349852946f;
|
52 |
+
const float seluAlpha = 1.6732632423543772848170429916717f;
|
53 |
+
|
54 |
+
// Loop over elements.
|
55 |
+
int xi = blockIdx.x * p.loopX * blockDim.x + threadIdx.x;
|
56 |
+
for (int loopIdx = 0; loopIdx < p.loopX && xi < p.sizeX; loopIdx++, xi += blockDim.x)
|
57 |
+
{
|
58 |
+
// Load and apply bias.
|
59 |
+
float x = (float)p.x[xi];
|
60 |
+
if (p.b)
|
61 |
+
x += (float)p.b[(xi / p.stepB) % p.sizeB];
|
62 |
+
float xref = (p.xref) ? (float)p.xref[xi] : 0.0f;
|
63 |
+
float yref = (p.yref) ? (float)p.yref[xi] : 0.0f;
|
64 |
+
float yy = (p.gain != 0.0f) ? yref / p.gain : 0.0f;
|
65 |
+
|
66 |
+
// Evaluate activation func.
|
67 |
+
float y;
|
68 |
+
switch (p.act * 10 + p.grad)
|
69 |
+
{
|
70 |
+
// linear
|
71 |
+
default:
|
72 |
+
case 10: y = x; break;
|
73 |
+
case 11: y = x; break;
|
74 |
+
case 12: y = 0.0f; break;
|
75 |
+
|
76 |
+
// relu
|
77 |
+
case 20: y = (x > 0.0f) ? x : 0.0f; break;
|
78 |
+
case 21: y = (yy > 0.0f) ? x : 0.0f; break;
|
79 |
+
case 22: y = 0.0f; break;
|
80 |
+
|
81 |
+
// lrelu
|
82 |
+
case 30: y = (x > 0.0f) ? x : x * p.alpha; break;
|
83 |
+
case 31: y = (yy > 0.0f) ? x : x * p.alpha; break;
|
84 |
+
case 32: y = 0.0f; break;
|
85 |
+
|
86 |
+
// tanh
|
87 |
+
case 40: { float c = expf(x); float d = 1.0f / c; y = (x < -expRange) ? -1.0f : (x > expRange) ? 1.0f : (c - d) / (c + d); } break;
|
88 |
+
case 41: y = x * (1.0f - yy * yy); break;
|
89 |
+
case 42: y = x * (1.0f - yy * yy) * (-2.0f * yy); break;
|
90 |
+
|
91 |
+
// sigmoid
|
92 |
+
case 50: y = (x < -expRange) ? 0.0f : 1.0f / (expf(-x) + 1.0f); break;
|
93 |
+
case 51: y = x * yy * (1.0f - yy); break;
|
94 |
+
case 52: y = x * yy * (1.0f - yy) * (1.0f - 2.0f * yy); break;
|
95 |
+
|
96 |
+
// elu
|
97 |
+
case 60: y = (x >= 0.0f) ? x : expf(x) - 1.0f; break;
|
98 |
+
case 61: y = (yy >= 0.0f) ? x : x * (yy + 1.0f); break;
|
99 |
+
case 62: y = (yy >= 0.0f) ? 0.0f : x * (yy + 1.0f); break;
|
100 |
+
|
101 |
+
// selu
|
102 |
+
case 70: y = (x >= 0.0f) ? seluScale * x : (seluScale * seluAlpha) * (expf(x) - 1.0f); break;
|
103 |
+
case 71: y = (yy >= 0.0f) ? x * seluScale : x * (yy + seluScale * seluAlpha); break;
|
104 |
+
case 72: y = (yy >= 0.0f) ? 0.0f : x * (yy + seluScale * seluAlpha); break;
|
105 |
+
|
106 |
+
// softplus
|
107 |
+
case 80: y = (x > expRange) ? x : logf(expf(x) + 1.0f); break;
|
108 |
+
case 81: y = x * (1.0f - expf(-yy)); break;
|
109 |
+
case 82: { float c = expf(-yy); y = x * c * (1.0f - c); } break;
|
110 |
+
|
111 |
+
// swish
|
112 |
+
case 90: y = (x < -expRange) ? 0.0f : x / (expf(-x) + 1.0f); break;
|
113 |
+
case 91:
|
114 |
+
case 92:
|
115 |
+
{
|
116 |
+
float c = expf(xref);
|
117 |
+
float d = c + 1.0f;
|
118 |
+
if (p.grad == 1)
|
119 |
+
y = (xref > halfExpRange) ? x : x * c * (xref + d) / (d * d);
|
120 |
+
else
|
121 |
+
y = (xref > halfExpRange) ? 0.0f : x * c * (xref * (2.0f - d) + 2.0f * d) / (d * d * d);
|
122 |
+
yref = (xref < -expRange) ? 0.0f : xref / (expf(-xref) + 1.0f) * p.gain;
|
123 |
+
}
|
124 |
+
break;
|
125 |
+
}
|
126 |
+
|
127 |
+
// Apply gain.
|
128 |
+
y *= p.gain;
|
129 |
+
|
130 |
+
// Clamp.
|
131 |
+
if (p.clamp >= 0.0f)
|
132 |
+
{
|
133 |
+
if (p.grad == 0)
|
134 |
+
y = (fabsf(y) < p.clamp) ? y : (y >= 0.0f) ? p.clamp : -p.clamp;
|
135 |
+
else
|
136 |
+
y = (fabsf(yref) < p.clamp) ? y : 0.0f;
|
137 |
+
}
|
138 |
+
|
139 |
+
// Store.
|
140 |
+
p.y[xi] = (T)y;
|
141 |
+
}
|
142 |
+
}
|
143 |
+
|
144 |
+
//------------------------------------------------------------------------
|
145 |
+
// TensorFlow op.
|
146 |
+
|
147 |
+
template <class T>
|
148 |
+
struct FusedBiasActOp : public OpKernel
|
149 |
+
{
|
150 |
+
FusedBiasActKernelParams<T> m_attribs;
|
151 |
+
|
152 |
+
FusedBiasActOp(OpKernelConstruction* ctx) : OpKernel(ctx)
|
153 |
+
{
|
154 |
+
memset(&m_attribs, 0, sizeof(m_attribs));
|
155 |
+
OP_REQUIRES_OK(ctx, ctx->GetAttr("grad", &m_attribs.grad));
|
156 |
+
OP_REQUIRES_OK(ctx, ctx->GetAttr("axis", &m_attribs.axis));
|
157 |
+
OP_REQUIRES_OK(ctx, ctx->GetAttr("act", &m_attribs.act));
|
158 |
+
OP_REQUIRES_OK(ctx, ctx->GetAttr("alpha", &m_attribs.alpha));
|
159 |
+
OP_REQUIRES_OK(ctx, ctx->GetAttr("gain", &m_attribs.gain));
|
160 |
+
OP_REQUIRES_OK(ctx, ctx->GetAttr("clamp", &m_attribs.clamp));
|
161 |
+
OP_REQUIRES(ctx, m_attribs.grad >= 0, errors::InvalidArgument("grad must be non-negative"));
|
162 |
+
OP_REQUIRES(ctx, m_attribs.axis >= 0, errors::InvalidArgument("axis must be non-negative"));
|
163 |
+
OP_REQUIRES(ctx, m_attribs.act >= 0, errors::InvalidArgument("act must be non-negative"));
|
164 |
+
}
|
165 |
+
|
166 |
+
void Compute(OpKernelContext* ctx)
|
167 |
+
{
|
168 |
+
FusedBiasActKernelParams<T> p = m_attribs;
|
169 |
+
cudaStream_t stream = ctx->eigen_device<Eigen::GpuDevice>().stream();
|
170 |
+
|
171 |
+
const Tensor& x = ctx->input(0); // [...]
|
172 |
+
const Tensor& b = ctx->input(1); // [sizeB] or [0]
|
173 |
+
const Tensor& xref = ctx->input(2); // x.shape or [0]
|
174 |
+
const Tensor& yref = ctx->input(3); // x.shape or [0]
|
175 |
+
p.x = x.flat<T>().data();
|
176 |
+
p.b = (b.NumElements()) ? b.flat<T>().data() : NULL;
|
177 |
+
p.xref = (xref.NumElements()) ? xref.flat<T>().data() : NULL;
|
178 |
+
p.yref = (yref.NumElements()) ? yref.flat<T>().data() : NULL;
|
179 |
+
OP_REQUIRES(ctx, b.NumElements() == 0 || m_attribs.axis < x.dims(), errors::InvalidArgument("axis out of bounds"));
|
180 |
+
OP_REQUIRES(ctx, b.dims() == 1, errors::InvalidArgument("b must have rank 1"));
|
181 |
+
OP_REQUIRES(ctx, b.NumElements() == 0 || b.NumElements() == x.dim_size(m_attribs.axis), errors::InvalidArgument("b has wrong number of elements"));
|
182 |
+
OP_REQUIRES(ctx, xref.NumElements() == 0 || xref.NumElements() == x.NumElements(), errors::InvalidArgument("xref has wrong number of elements"));
|
183 |
+
OP_REQUIRES(ctx, yref.NumElements() == 0 || yref.NumElements() == x.NumElements(), errors::InvalidArgument("yref has wrong number of elements"));
|
184 |
+
OP_REQUIRES(ctx, x.NumElements() <= kint32max, errors::InvalidArgument("x is too large"));
|
185 |
+
|
186 |
+
p.sizeX = (int)x.NumElements();
|
187 |
+
p.sizeB = (int)b.NumElements();
|
188 |
+
p.stepB = 1;
|
189 |
+
for (int i = m_attribs.axis + 1; i < x.dims(); i++)
|
190 |
+
p.stepB *= (int)x.dim_size(i);
|
191 |
+
|
192 |
+
Tensor* y = NULL; // x.shape
|
193 |
+
OP_REQUIRES_OK(ctx, ctx->allocate_output(0, x.shape(), &y));
|
194 |
+
p.y = y->flat<T>().data();
|
195 |
+
|
196 |
+
p.loopX = 4;
|
197 |
+
int blockSize = 4 * 32;
|
198 |
+
int gridSize = (p.sizeX - 1) / (p.loopX * blockSize) + 1;
|
199 |
+
void* args[] = {&p};
|
200 |
+
OP_CHECK_CUDA_ERROR(ctx, cudaLaunchKernel((void*)FusedBiasActKernel<T>, gridSize, blockSize, args, 0, stream));
|
201 |
+
}
|
202 |
+
};
|
203 |
+
|
204 |
+
REGISTER_OP("FusedBiasAct")
|
205 |
+
.Input ("x: T")
|
206 |
+
.Input ("b: T")
|
207 |
+
.Input ("xref: T")
|
208 |
+
.Input ("yref: T")
|
209 |
+
.Output ("y: T")
|
210 |
+
.Attr ("T: {float, half}")
|
211 |
+
.Attr ("grad: int = 0")
|
212 |
+
.Attr ("axis: int = 1")
|
213 |
+
.Attr ("act: int = 0")
|
214 |
+
.Attr ("alpha: float = 0.0")
|
215 |
+
.Attr ("gain: float = 1.0")
|
216 |
+
.Attr ("clamp: float = -1.0");
|
217 |
+
REGISTER_KERNEL_BUILDER(Name("FusedBiasAct").Device(DEVICE_GPU).TypeConstraint<float>("T"), FusedBiasActOp<float>);
|
218 |
+
REGISTER_KERNEL_BUILDER(Name("FusedBiasAct").Device(DEVICE_GPU).TypeConstraint<Eigen::half>("T"), FusedBiasActOp<Eigen::half>);
|
219 |
+
|
220 |
+
//------------------------------------------------------------------------
|
PTI/models/StyleCLIP/global_directions/dnnlib/tflib/ops/fused_bias_act.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
"""Custom TensorFlow ops for efficient bias and activation."""
|
10 |
+
|
11 |
+
import os
|
12 |
+
import numpy as np
|
13 |
+
import tensorflow as tf
|
14 |
+
from .. import custom_ops
|
15 |
+
from ...util import EasyDict
|
16 |
+
|
17 |
+
def _get_plugin():
|
18 |
+
return custom_ops.get_plugin(os.path.splitext(__file__)[0] + '.cu')
|
19 |
+
|
20 |
+
#----------------------------------------------------------------------------
|
21 |
+
|
22 |
+
activation_funcs = {
|
23 |
+
'linear': EasyDict(func=lambda x, **_: x, def_alpha=None, def_gain=1.0, cuda_idx=1, ref='y', zero_2nd_grad=True),
|
24 |
+
'relu': EasyDict(func=lambda x, **_: tf.nn.relu(x), def_alpha=None, def_gain=np.sqrt(2), cuda_idx=2, ref='y', zero_2nd_grad=True),
|
25 |
+
'lrelu': EasyDict(func=lambda x, alpha, **_: tf.nn.leaky_relu(x, alpha), def_alpha=0.2, def_gain=np.sqrt(2), cuda_idx=3, ref='y', zero_2nd_grad=True),
|
26 |
+
'tanh': EasyDict(func=lambda x, **_: tf.nn.tanh(x), def_alpha=None, def_gain=1.0, cuda_idx=4, ref='y', zero_2nd_grad=False),
|
27 |
+
'sigmoid': EasyDict(func=lambda x, **_: tf.nn.sigmoid(x), def_alpha=None, def_gain=1.0, cuda_idx=5, ref='y', zero_2nd_grad=False),
|
28 |
+
'elu': EasyDict(func=lambda x, **_: tf.nn.elu(x), def_alpha=None, def_gain=1.0, cuda_idx=6, ref='y', zero_2nd_grad=False),
|
29 |
+
'selu': EasyDict(func=lambda x, **_: tf.nn.selu(x), def_alpha=None, def_gain=1.0, cuda_idx=7, ref='y', zero_2nd_grad=False),
|
30 |
+
'softplus': EasyDict(func=lambda x, **_: tf.nn.softplus(x), def_alpha=None, def_gain=1.0, cuda_idx=8, ref='y', zero_2nd_grad=False),
|
31 |
+
'swish': EasyDict(func=lambda x, **_: tf.nn.sigmoid(x) * x, def_alpha=None, def_gain=np.sqrt(2), cuda_idx=9, ref='x', zero_2nd_grad=False),
|
32 |
+
}
|
33 |
+
|
34 |
+
#----------------------------------------------------------------------------
|
35 |
+
|
36 |
+
def fused_bias_act(x, b=None, axis=1, act='linear', alpha=None, gain=None, clamp=None, impl='cuda'):
|
37 |
+
r"""Fused bias and activation function.
|
38 |
+
|
39 |
+
Adds bias `b` to activation tensor `x`, evaluates activation function `act`,
|
40 |
+
and scales the result by `gain`. Each of the steps is optional. In most cases,
|
41 |
+
the fused op is considerably more efficient than performing the same calculation
|
42 |
+
using standard TensorFlow ops. It supports first and second order gradients,
|
43 |
+
but not third order gradients.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
x: Input activation tensor. Can have any shape, but if `b` is defined, the
|
47 |
+
dimension corresponding to `axis`, as well as the rank, must be known.
|
48 |
+
b: Bias vector, or `None` to disable. Must be a 1D tensor of the same type
|
49 |
+
as `x`. The shape must be known, and it must match the dimension of `x`
|
50 |
+
corresponding to `axis`.
|
51 |
+
axis: The dimension in `x` corresponding to the elements of `b`.
|
52 |
+
The value of `axis` is ignored if `b` is not specified.
|
53 |
+
act: Name of the activation function to evaluate, or `"linear"` to disable.
|
54 |
+
Can be e.g. `"relu"`, `"lrelu"`, `"tanh"`, `"sigmoid"`, `"swish"`, etc.
|
55 |
+
See `activation_funcs` for a full list. `None` is not allowed.
|
56 |
+
alpha: Shape parameter for the activation function, or `None` to use the default.
|
57 |
+
gain: Scaling factor for the output tensor, or `None` to use default.
|
58 |
+
See `activation_funcs` for the default scaling of each activation function.
|
59 |
+
If unsure, consider specifying `1.0`.
|
60 |
+
clamp: Clamp the output values to `[-clamp, +clamp]`, or `None` to disable
|
61 |
+
the clamping (default).
|
62 |
+
impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default).
|
63 |
+
|
64 |
+
Returns:
|
65 |
+
Tensor of the same shape and datatype as `x`.
|
66 |
+
"""
|
67 |
+
|
68 |
+
impl_dict = {
|
69 |
+
'ref': _fused_bias_act_ref,
|
70 |
+
'cuda': _fused_bias_act_cuda,
|
71 |
+
}
|
72 |
+
return impl_dict[impl](x=x, b=b, axis=axis, act=act, alpha=alpha, gain=gain, clamp=clamp)
|
73 |
+
|
74 |
+
#----------------------------------------------------------------------------
|
75 |
+
|
76 |
+
def _fused_bias_act_ref(x, b, axis, act, alpha, gain, clamp):
|
77 |
+
"""Slow reference implementation of `fused_bias_act()` using standard TensorFlow ops."""
|
78 |
+
|
79 |
+
# Validate arguments.
|
80 |
+
x = tf.convert_to_tensor(x)
|
81 |
+
b = tf.convert_to_tensor(b) if b is not None else tf.constant([], dtype=x.dtype)
|
82 |
+
act_spec = activation_funcs[act]
|
83 |
+
assert b.shape.rank == 1 and (b.shape[0] == 0 or b.shape[0] == x.shape[axis])
|
84 |
+
assert b.shape[0] == 0 or 0 <= axis < x.shape.rank
|
85 |
+
if alpha is None:
|
86 |
+
alpha = act_spec.def_alpha
|
87 |
+
if gain is None:
|
88 |
+
gain = act_spec.def_gain
|
89 |
+
|
90 |
+
# Add bias.
|
91 |
+
if b.shape[0] != 0:
|
92 |
+
x += tf.reshape(b, [-1 if i == axis else 1 for i in range(x.shape.rank)])
|
93 |
+
|
94 |
+
# Evaluate activation function.
|
95 |
+
x = act_spec.func(x, alpha=alpha)
|
96 |
+
|
97 |
+
# Scale by gain.
|
98 |
+
if gain != 1:
|
99 |
+
x *= gain
|
100 |
+
|
101 |
+
# Clamp.
|
102 |
+
if clamp is not None:
|
103 |
+
clamp = np.asarray(clamp, dtype=x.dtype.name)
|
104 |
+
assert clamp.shape == () and clamp >= 0
|
105 |
+
x = tf.clip_by_value(x, -clamp, clamp)
|
106 |
+
return x
|
107 |
+
|
108 |
+
#----------------------------------------------------------------------------
|
109 |
+
|
110 |
+
def _fused_bias_act_cuda(x, b, axis, act, alpha, gain, clamp):
|
111 |
+
"""Fast CUDA implementation of `fused_bias_act()` using custom ops."""
|
112 |
+
|
113 |
+
# Validate arguments.
|
114 |
+
x = tf.convert_to_tensor(x)
|
115 |
+
empty_tensor = tf.constant([], dtype=x.dtype)
|
116 |
+
b = tf.convert_to_tensor(b) if b is not None else empty_tensor
|
117 |
+
act_spec = activation_funcs[act]
|
118 |
+
assert b.shape.rank == 1 and (b.shape[0] == 0 or b.shape[0] == x.shape[axis])
|
119 |
+
assert b.shape[0] == 0 or 0 <= axis < x.shape.rank
|
120 |
+
if alpha is None:
|
121 |
+
alpha = act_spec.def_alpha
|
122 |
+
if gain is None:
|
123 |
+
gain = act_spec.def_gain
|
124 |
+
|
125 |
+
# Special cases.
|
126 |
+
if act == 'linear' and b is None and gain == 1.0:
|
127 |
+
return x
|
128 |
+
if act_spec.cuda_idx is None:
|
129 |
+
return _fused_bias_act_ref(x=x, b=b, axis=axis, act=act, alpha=alpha, gain=gain, clamp=clamp)
|
130 |
+
|
131 |
+
# CUDA op.
|
132 |
+
cuda_op = _get_plugin().fused_bias_act
|
133 |
+
cuda_kwargs = dict(axis=int(axis), act=int(act_spec.cuda_idx), gain=float(gain))
|
134 |
+
if alpha is not None:
|
135 |
+
cuda_kwargs['alpha'] = float(alpha)
|
136 |
+
if clamp is not None:
|
137 |
+
clamp = np.asarray(clamp, dtype=x.dtype.name)
|
138 |
+
assert clamp.shape == () and clamp >= 0
|
139 |
+
cuda_kwargs['clamp'] = float(clamp.astype(np.float32))
|
140 |
+
def ref(tensor, name):
|
141 |
+
return tensor if act_spec.ref == name else empty_tensor
|
142 |
+
|
143 |
+
# Forward pass: y = func(x, b).
|
144 |
+
def func_y(x, b):
|
145 |
+
y = cuda_op(x=x, b=b, xref=empty_tensor, yref=empty_tensor, grad=0, **cuda_kwargs)
|
146 |
+
y.set_shape(x.shape)
|
147 |
+
return y
|
148 |
+
|
149 |
+
# Backward pass: dx, db = grad(dy, x, y)
|
150 |
+
def grad_dx(dy, x, y):
|
151 |
+
dx = cuda_op(x=dy, b=empty_tensor, xref=ref(x,'x'), yref=ref(y,'y'), grad=1, **cuda_kwargs)
|
152 |
+
dx.set_shape(x.shape)
|
153 |
+
return dx
|
154 |
+
def grad_db(dx):
|
155 |
+
if b.shape[0] == 0:
|
156 |
+
return empty_tensor
|
157 |
+
db = dx
|
158 |
+
if axis < x.shape.rank - 1:
|
159 |
+
db = tf.reduce_sum(db, list(range(axis + 1, x.shape.rank)))
|
160 |
+
if axis > 0:
|
161 |
+
db = tf.reduce_sum(db, list(range(axis)))
|
162 |
+
db.set_shape(b.shape)
|
163 |
+
return db
|
164 |
+
|
165 |
+
# Second order gradients: d_dy, d_x = grad2(d_dx, d_db, x, y)
|
166 |
+
def grad2_d_dy(d_dx, d_db, x, y):
|
167 |
+
d_dy = cuda_op(x=d_dx, b=d_db, xref=ref(x,'x'), yref=ref(y,'y'), grad=1, **cuda_kwargs)
|
168 |
+
d_dy.set_shape(x.shape)
|
169 |
+
return d_dy
|
170 |
+
def grad2_d_x(d_dx, d_db, x, y):
|
171 |
+
d_x = cuda_op(x=d_dx, b=d_db, xref=ref(x,'x'), yref=ref(y,'y'), grad=2, **cuda_kwargs)
|
172 |
+
d_x.set_shape(x.shape)
|
173 |
+
return d_x
|
174 |
+
|
175 |
+
# Fast version for piecewise-linear activation funcs.
|
176 |
+
@tf.custom_gradient
|
177 |
+
def func_zero_2nd_grad(x, b):
|
178 |
+
y = func_y(x, b)
|
179 |
+
@tf.custom_gradient
|
180 |
+
def grad(dy):
|
181 |
+
dx = grad_dx(dy, x, y)
|
182 |
+
db = grad_db(dx)
|
183 |
+
def grad2(d_dx, d_db):
|
184 |
+
d_dy = grad2_d_dy(d_dx, d_db, x, y)
|
185 |
+
return d_dy
|
186 |
+
return (dx, db), grad2
|
187 |
+
return y, grad
|
188 |
+
|
189 |
+
# Slow version for general activation funcs.
|
190 |
+
@tf.custom_gradient
|
191 |
+
def func_nonzero_2nd_grad(x, b):
|
192 |
+
y = func_y(x, b)
|
193 |
+
def grad_wrap(dy):
|
194 |
+
@tf.custom_gradient
|
195 |
+
def grad_impl(dy, x):
|
196 |
+
dx = grad_dx(dy, x, y)
|
197 |
+
db = grad_db(dx)
|
198 |
+
def grad2(d_dx, d_db):
|
199 |
+
d_dy = grad2_d_dy(d_dx, d_db, x, y)
|
200 |
+
d_x = grad2_d_x(d_dx, d_db, x, y)
|
201 |
+
return d_dy, d_x
|
202 |
+
return (dx, db), grad2
|
203 |
+
return grad_impl(dy, x)
|
204 |
+
return y, grad_wrap
|
205 |
+
|
206 |
+
# Which version to use?
|
207 |
+
if act_spec.zero_2nd_grad:
|
208 |
+
return func_zero_2nd_grad(x, b)
|
209 |
+
return func_nonzero_2nd_grad(x, b)
|
210 |
+
|
211 |
+
#----------------------------------------------------------------------------
|
PTI/models/StyleCLIP/global_directions/dnnlib/tflib/ops/upfirdn_2d.cu
ADDED
@@ -0,0 +1,359 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
//
|
3 |
+
// NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
// and proprietary rights in and to this software, related documentation
|
5 |
+
// and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
// distribution of this software and related documentation without an express
|
7 |
+
// license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
#define EIGEN_USE_GPU
|
10 |
+
#define __CUDA_INCLUDE_COMPILER_INTERNAL_HEADERS__
|
11 |
+
#include "tensorflow/core/framework/op.h"
|
12 |
+
#include "tensorflow/core/framework/op_kernel.h"
|
13 |
+
#include "tensorflow/core/framework/shape_inference.h"
|
14 |
+
#include <stdio.h>
|
15 |
+
|
16 |
+
using namespace tensorflow;
|
17 |
+
using namespace tensorflow::shape_inference;
|
18 |
+
|
19 |
+
//------------------------------------------------------------------------
|
20 |
+
// Helpers.
|
21 |
+
|
22 |
+
#define OP_CHECK_CUDA_ERROR(CTX, CUDA_CALL) do { cudaError_t err = CUDA_CALL; OP_REQUIRES(CTX, err == cudaSuccess, errors::Internal(cudaGetErrorName(err))); } while (false)
|
23 |
+
|
24 |
+
static __host__ __device__ __forceinline__ int floorDiv(int a, int b)
|
25 |
+
{
|
26 |
+
int t = 1 - a / b;
|
27 |
+
return (a + t * b) / b - t;
|
28 |
+
}
|
29 |
+
|
30 |
+
//------------------------------------------------------------------------
|
31 |
+
// CUDA kernel params.
|
32 |
+
|
33 |
+
template <class T>
|
34 |
+
struct UpFirDn2DKernelParams
|
35 |
+
{
|
36 |
+
const T* x; // [majorDim, inH, inW, minorDim]
|
37 |
+
const T* k; // [kernelH, kernelW]
|
38 |
+
T* y; // [majorDim, outH, outW, minorDim]
|
39 |
+
|
40 |
+
int upx;
|
41 |
+
int upy;
|
42 |
+
int downx;
|
43 |
+
int downy;
|
44 |
+
int padx0;
|
45 |
+
int padx1;
|
46 |
+
int pady0;
|
47 |
+
int pady1;
|
48 |
+
|
49 |
+
int majorDim;
|
50 |
+
int inH;
|
51 |
+
int inW;
|
52 |
+
int minorDim;
|
53 |
+
int kernelH;
|
54 |
+
int kernelW;
|
55 |
+
int outH;
|
56 |
+
int outW;
|
57 |
+
int loopMajor;
|
58 |
+
int loopX;
|
59 |
+
};
|
60 |
+
|
61 |
+
//------------------------------------------------------------------------
|
62 |
+
// General CUDA implementation for large filter kernels.
|
63 |
+
|
64 |
+
template <class T>
|
65 |
+
static __global__ void UpFirDn2DKernel_large(const UpFirDn2DKernelParams<T> p)
|
66 |
+
{
|
67 |
+
// Calculate thread index.
|
68 |
+
int minorIdx = blockIdx.x * blockDim.x + threadIdx.x;
|
69 |
+
int outY = minorIdx / p.minorDim;
|
70 |
+
minorIdx -= outY * p.minorDim;
|
71 |
+
int outXBase = blockIdx.y * p.loopX * blockDim.y + threadIdx.y;
|
72 |
+
int majorIdxBase = blockIdx.z * p.loopMajor;
|
73 |
+
if (outXBase >= p.outW || outY >= p.outH || majorIdxBase >= p.majorDim)
|
74 |
+
return;
|
75 |
+
|
76 |
+
// Setup Y receptive field.
|
77 |
+
int midY = outY * p.downy + p.upy - 1 - p.pady0;
|
78 |
+
int inY = min(max(floorDiv(midY, p.upy), 0), p.inH);
|
79 |
+
int h = min(max(floorDiv(midY + p.kernelH, p.upy), 0), p.inH) - inY;
|
80 |
+
int kernelY = midY + p.kernelH - (inY + 1) * p.upy;
|
81 |
+
|
82 |
+
// Loop over majorDim and outX.
|
83 |
+
for (int loopMajor = 0, majorIdx = majorIdxBase; loopMajor < p.loopMajor && majorIdx < p.majorDim; loopMajor++, majorIdx++)
|
84 |
+
for (int loopX = 0, outX = outXBase; loopX < p.loopX && outX < p.outW; loopX++, outX += blockDim.y)
|
85 |
+
{
|
86 |
+
// Setup X receptive field.
|
87 |
+
int midX = outX * p.downx + p.upx - 1 - p.padx0;
|
88 |
+
int inX = min(max(floorDiv(midX, p.upx), 0), p.inW);
|
89 |
+
int w = min(max(floorDiv(midX + p.kernelW, p.upx), 0), p.inW) - inX;
|
90 |
+
int kernelX = midX + p.kernelW - (inX + 1) * p.upx;
|
91 |
+
|
92 |
+
// Initialize pointers.
|
93 |
+
const T* xp = &p.x[((majorIdx * p.inH + inY) * p.inW + inX) * p.minorDim + minorIdx];
|
94 |
+
const T* kp = &p.k[kernelY * p.kernelW + kernelX];
|
95 |
+
int xpx = p.minorDim;
|
96 |
+
int kpx = -p.upx;
|
97 |
+
int xpy = p.inW * p.minorDim;
|
98 |
+
int kpy = -p.upy * p.kernelW;
|
99 |
+
|
100 |
+
// Inner loop.
|
101 |
+
float v = 0.0f;
|
102 |
+
for (int y = 0; y < h; y++)
|
103 |
+
{
|
104 |
+
for (int x = 0; x < w; x++)
|
105 |
+
{
|
106 |
+
v += (float)(*xp) * (float)(*kp);
|
107 |
+
xp += xpx;
|
108 |
+
kp += kpx;
|
109 |
+
}
|
110 |
+
xp += xpy - w * xpx;
|
111 |
+
kp += kpy - w * kpx;
|
112 |
+
}
|
113 |
+
|
114 |
+
// Store result.
|
115 |
+
p.y[((majorIdx * p.outH + outY) * p.outW + outX) * p.minorDim + minorIdx] = (T)v;
|
116 |
+
}
|
117 |
+
}
|
118 |
+
|
119 |
+
//------------------------------------------------------------------------
|
120 |
+
// Specialized CUDA implementation for small filter kernels.
|
121 |
+
|
122 |
+
template <class T, int upx, int upy, int downx, int downy, int kernelW, int kernelH, int tileOutW, int tileOutH>
|
123 |
+
static __global__ void UpFirDn2DKernel_small(const UpFirDn2DKernelParams<T> p)
|
124 |
+
{
|
125 |
+
//assert(kernelW % upx == 0);
|
126 |
+
//assert(kernelH % upy == 0);
|
127 |
+
const int tileInW = ((tileOutW - 1) * downx + kernelW - 1) / upx + 1;
|
128 |
+
const int tileInH = ((tileOutH - 1) * downy + kernelH - 1) / upy + 1;
|
129 |
+
__shared__ volatile float sk[kernelH][kernelW];
|
130 |
+
__shared__ volatile float sx[tileInH][tileInW];
|
131 |
+
|
132 |
+
// Calculate tile index.
|
133 |
+
int minorIdx = blockIdx.x;
|
134 |
+
int tileOutY = minorIdx / p.minorDim;
|
135 |
+
minorIdx -= tileOutY * p.minorDim;
|
136 |
+
tileOutY *= tileOutH;
|
137 |
+
int tileOutXBase = blockIdx.y * p.loopX * tileOutW;
|
138 |
+
int majorIdxBase = blockIdx.z * p.loopMajor;
|
139 |
+
if (tileOutXBase >= p.outW | tileOutY >= p.outH | majorIdxBase >= p.majorDim)
|
140 |
+
return;
|
141 |
+
|
142 |
+
// Load filter kernel (flipped).
|
143 |
+
for (int tapIdx = threadIdx.x; tapIdx < kernelH * kernelW; tapIdx += blockDim.x)
|
144 |
+
{
|
145 |
+
int ky = tapIdx / kernelW;
|
146 |
+
int kx = tapIdx - ky * kernelW;
|
147 |
+
float v = 0.0f;
|
148 |
+
if (kx < p.kernelW & ky < p.kernelH)
|
149 |
+
v = (float)p.k[(p.kernelH - 1 - ky) * p.kernelW + (p.kernelW - 1 - kx)];
|
150 |
+
sk[ky][kx] = v;
|
151 |
+
}
|
152 |
+
|
153 |
+
// Loop over majorDim and outX.
|
154 |
+
for (int loopMajor = 0, majorIdx = majorIdxBase; loopMajor < p.loopMajor & majorIdx < p.majorDim; loopMajor++, majorIdx++)
|
155 |
+
for (int loopX = 0, tileOutX = tileOutXBase; loopX < p.loopX & tileOutX < p.outW; loopX++, tileOutX += tileOutW)
|
156 |
+
{
|
157 |
+
// Load input pixels.
|
158 |
+
int tileMidX = tileOutX * downx + upx - 1 - p.padx0;
|
159 |
+
int tileMidY = tileOutY * downy + upy - 1 - p.pady0;
|
160 |
+
int tileInX = floorDiv(tileMidX, upx);
|
161 |
+
int tileInY = floorDiv(tileMidY, upy);
|
162 |
+
__syncthreads();
|
163 |
+
for (int inIdx = threadIdx.x; inIdx < tileInH * tileInW; inIdx += blockDim.x)
|
164 |
+
{
|
165 |
+
int relInY = inIdx / tileInW;
|
166 |
+
int relInX = inIdx - relInY * tileInW;
|
167 |
+
int inX = relInX + tileInX;
|
168 |
+
int inY = relInY + tileInY;
|
169 |
+
float v = 0.0f;
|
170 |
+
if (inX >= 0 & inY >= 0 & inX < p.inW & inY < p.inH)
|
171 |
+
v = (float)p.x[((majorIdx * p.inH + inY) * p.inW + inX) * p.minorDim + minorIdx];
|
172 |
+
sx[relInY][relInX] = v;
|
173 |
+
}
|
174 |
+
|
175 |
+
// Loop over output pixels.
|
176 |
+
__syncthreads();
|
177 |
+
for (int outIdx = threadIdx.x; outIdx < tileOutH * tileOutW; outIdx += blockDim.x)
|
178 |
+
{
|
179 |
+
int relOutY = outIdx / tileOutW;
|
180 |
+
int relOutX = outIdx - relOutY * tileOutW;
|
181 |
+
int outX = relOutX + tileOutX;
|
182 |
+
int outY = relOutY + tileOutY;
|
183 |
+
|
184 |
+
// Setup receptive field.
|
185 |
+
int midX = tileMidX + relOutX * downx;
|
186 |
+
int midY = tileMidY + relOutY * downy;
|
187 |
+
int inX = floorDiv(midX, upx);
|
188 |
+
int inY = floorDiv(midY, upy);
|
189 |
+
int relInX = inX - tileInX;
|
190 |
+
int relInY = inY - tileInY;
|
191 |
+
int kernelX = (inX + 1) * upx - midX - 1; // flipped
|
192 |
+
int kernelY = (inY + 1) * upy - midY - 1; // flipped
|
193 |
+
|
194 |
+
// Inner loop.
|
195 |
+
float v = 0.0f;
|
196 |
+
#pragma unroll
|
197 |
+
for (int y = 0; y < kernelH / upy; y++)
|
198 |
+
#pragma unroll
|
199 |
+
for (int x = 0; x < kernelW / upx; x++)
|
200 |
+
v += sx[relInY + y][relInX + x] * sk[kernelY + y * upy][kernelX + x * upx];
|
201 |
+
|
202 |
+
// Store result.
|
203 |
+
if (outX < p.outW & outY < p.outH)
|
204 |
+
p.y[((majorIdx * p.outH + outY) * p.outW + outX) * p.minorDim + minorIdx] = (T)v;
|
205 |
+
}
|
206 |
+
}
|
207 |
+
}
|
208 |
+
|
209 |
+
//------------------------------------------------------------------------
|
210 |
+
// TensorFlow op.
|
211 |
+
|
212 |
+
template <class T>
|
213 |
+
struct UpFirDn2DOp : public OpKernel
|
214 |
+
{
|
215 |
+
UpFirDn2DKernelParams<T> m_attribs;
|
216 |
+
|
217 |
+
UpFirDn2DOp(OpKernelConstruction* ctx) : OpKernel(ctx)
|
218 |
+
{
|
219 |
+
memset(&m_attribs, 0, sizeof(m_attribs));
|
220 |
+
OP_REQUIRES_OK(ctx, ctx->GetAttr("upx", &m_attribs.upx));
|
221 |
+
OP_REQUIRES_OK(ctx, ctx->GetAttr("upy", &m_attribs.upy));
|
222 |
+
OP_REQUIRES_OK(ctx, ctx->GetAttr("downx", &m_attribs.downx));
|
223 |
+
OP_REQUIRES_OK(ctx, ctx->GetAttr("downy", &m_attribs.downy));
|
224 |
+
OP_REQUIRES_OK(ctx, ctx->GetAttr("padx0", &m_attribs.padx0));
|
225 |
+
OP_REQUIRES_OK(ctx, ctx->GetAttr("padx1", &m_attribs.padx1));
|
226 |
+
OP_REQUIRES_OK(ctx, ctx->GetAttr("pady0", &m_attribs.pady0));
|
227 |
+
OP_REQUIRES_OK(ctx, ctx->GetAttr("pady1", &m_attribs.pady1));
|
228 |
+
OP_REQUIRES(ctx, m_attribs.upx >= 1 && m_attribs.upy >= 1, errors::InvalidArgument("upx and upy must be at least 1x1"));
|
229 |
+
OP_REQUIRES(ctx, m_attribs.downx >= 1 && m_attribs.downy >= 1, errors::InvalidArgument("downx and downy must be at least 1x1"));
|
230 |
+
}
|
231 |
+
|
232 |
+
void Compute(OpKernelContext* ctx)
|
233 |
+
{
|
234 |
+
UpFirDn2DKernelParams<T> p = m_attribs;
|
235 |
+
cudaStream_t stream = ctx->eigen_device<Eigen::GpuDevice>().stream();
|
236 |
+
|
237 |
+
const Tensor& x = ctx->input(0); // [majorDim, inH, inW, minorDim]
|
238 |
+
const Tensor& k = ctx->input(1); // [kernelH, kernelW]
|
239 |
+
p.x = x.flat<T>().data();
|
240 |
+
p.k = k.flat<T>().data();
|
241 |
+
OP_REQUIRES(ctx, x.dims() == 4, errors::InvalidArgument("input must have rank 4"));
|
242 |
+
OP_REQUIRES(ctx, k.dims() == 2, errors::InvalidArgument("kernel must have rank 2"));
|
243 |
+
OP_REQUIRES(ctx, x.NumElements() <= kint32max, errors::InvalidArgument("input too large"));
|
244 |
+
OP_REQUIRES(ctx, k.NumElements() <= kint32max, errors::InvalidArgument("kernel too large"));
|
245 |
+
|
246 |
+
p.majorDim = (int)x.dim_size(0);
|
247 |
+
p.inH = (int)x.dim_size(1);
|
248 |
+
p.inW = (int)x.dim_size(2);
|
249 |
+
p.minorDim = (int)x.dim_size(3);
|
250 |
+
p.kernelH = (int)k.dim_size(0);
|
251 |
+
p.kernelW = (int)k.dim_size(1);
|
252 |
+
OP_REQUIRES(ctx, p.kernelW >= 1 && p.kernelH >= 1, errors::InvalidArgument("kernel must be at least 1x1"));
|
253 |
+
|
254 |
+
p.outW = (p.inW * p.upx + p.padx0 + p.padx1 - p.kernelW + p.downx) / p.downx;
|
255 |
+
p.outH = (p.inH * p.upy + p.pady0 + p.pady1 - p.kernelH + p.downy) / p.downy;
|
256 |
+
OP_REQUIRES(ctx, p.outW >= 1 && p.outH >= 1, errors::InvalidArgument("output must be at least 1x1"));
|
257 |
+
|
258 |
+
Tensor* y = NULL; // [majorDim, outH, outW, minorDim]
|
259 |
+
TensorShape ys;
|
260 |
+
ys.AddDim(p.majorDim);
|
261 |
+
ys.AddDim(p.outH);
|
262 |
+
ys.AddDim(p.outW);
|
263 |
+
ys.AddDim(p.minorDim);
|
264 |
+
OP_REQUIRES_OK(ctx, ctx->allocate_output(0, ys, &y));
|
265 |
+
p.y = y->flat<T>().data();
|
266 |
+
OP_REQUIRES(ctx, y->NumElements() <= kint32max, errors::InvalidArgument("output too large"));
|
267 |
+
|
268 |
+
// Choose CUDA kernel to use.
|
269 |
+
void* cudaKernel = (void*)UpFirDn2DKernel_large<T>;
|
270 |
+
int tileOutW = -1;
|
271 |
+
int tileOutH = -1;
|
272 |
+
|
273 |
+
if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 7 && p.kernelH <= 7 ) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,1, 7,7, 64,16>; tileOutW = 64; tileOutH = 16; }
|
274 |
+
if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 6 && p.kernelH <= 6 ) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,1, 6,6, 64,16>; tileOutW = 64; tileOutH = 16; }
|
275 |
+
if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 5 && p.kernelH <= 5 ) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,1, 5,5, 64,16>; tileOutW = 64; tileOutH = 16; }
|
276 |
+
if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 4 && p.kernelH <= 4 ) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,1, 4,4, 64,16>; tileOutW = 64; tileOutH = 16; }
|
277 |
+
if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 3 && p.kernelH <= 3 ) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,1, 3,3, 64,16>; tileOutW = 64; tileOutH = 16; }
|
278 |
+
if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 24 && p.kernelH <= 1 ) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,1, 24,1, 128,8>; tileOutW = 128; tileOutH = 8; }
|
279 |
+
if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 20 && p.kernelH <= 1 ) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,1, 20,1, 128,8>; tileOutW = 128; tileOutH = 8; }
|
280 |
+
if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 16 && p.kernelH <= 1 ) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,1, 16,1, 128,8>; tileOutW = 128; tileOutH = 8; }
|
281 |
+
if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 12 && p.kernelH <= 1 ) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,1, 12,1, 128,8>; tileOutW = 128; tileOutH = 8; }
|
282 |
+
if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 8 && p.kernelH <= 1 ) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,1, 8,1, 128,8>; tileOutW = 128; tileOutH = 8; }
|
283 |
+
if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 1 && p.kernelH <= 24) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,1, 1,24, 32,32>; tileOutW = 32; tileOutH = 32; }
|
284 |
+
if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 1 && p.kernelH <= 20) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,1, 1,20, 32,32>; tileOutW = 32; tileOutH = 32; }
|
285 |
+
if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 1 && p.kernelH <= 16) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,1, 1,16, 32,32>; tileOutW = 32; tileOutH = 32; }
|
286 |
+
if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 1 && p.kernelH <= 12) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,1, 1,12, 32,32>; tileOutW = 32; tileOutH = 32; }
|
287 |
+
if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 1 && p.kernelH <= 8 ) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,1, 1,8, 32,32>; tileOutW = 32; tileOutH = 32; }
|
288 |
+
|
289 |
+
if (p.upx == 2 && p.upy == 2 && p.downx == 1 && p.downy == 1 && p.kernelW <= 8 && p.kernelH <= 8 ) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 2,2, 1,1, 8,8, 64,16>; tileOutW = 64; tileOutH = 16; }
|
290 |
+
if (p.upx == 2 && p.upy == 2 && p.downx == 1 && p.downy == 1 && p.kernelW <= 6 && p.kernelH <= 6 ) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 2,2, 1,1, 6,6, 64,16>; tileOutW = 64; tileOutH = 16; }
|
291 |
+
if (p.upx == 2 && p.upy == 2 && p.downx == 1 && p.downy == 1 && p.kernelW <= 4 && p.kernelH <= 4 ) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 2,2, 1,1, 4,4, 64,16>; tileOutW = 64; tileOutH = 16; }
|
292 |
+
if (p.upx == 2 && p.upy == 2 && p.downx == 1 && p.downy == 1 && p.kernelW <= 2 && p.kernelH <= 2 ) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 2,2, 1,1, 2,2, 64,16>; tileOutW = 64; tileOutH = 16; }
|
293 |
+
if (p.upx == 2 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 24 && p.kernelH <= 1 ) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 2,1, 1,1, 24,1, 128,8>; tileOutW = 128; tileOutH = 8; }
|
294 |
+
if (p.upx == 2 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 20 && p.kernelH <= 1 ) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 2,1, 1,1, 20,1, 128,8>; tileOutW = 128; tileOutH = 8; }
|
295 |
+
if (p.upx == 2 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 16 && p.kernelH <= 1 ) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 2,1, 1,1, 16,1, 128,8>; tileOutW = 128; tileOutH = 8; }
|
296 |
+
if (p.upx == 2 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 12 && p.kernelH <= 1 ) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 2,1, 1,1, 12,1, 128,8>; tileOutW = 128; tileOutH = 8; }
|
297 |
+
if (p.upx == 2 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 8 && p.kernelH <= 1 ) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 2,1, 1,1, 8,1, 128,8>; tileOutW = 128; tileOutH = 8; }
|
298 |
+
if (p.upx == 1 && p.upy == 2 && p.downx == 1 && p.downy == 1 && p.kernelW <= 1 && p.kernelH <= 24) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,2, 1,1, 1,24, 32,32>; tileOutW = 32; tileOutH = 32; }
|
299 |
+
if (p.upx == 1 && p.upy == 2 && p.downx == 1 && p.downy == 1 && p.kernelW <= 1 && p.kernelH <= 20) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,2, 1,1, 1,20, 32,32>; tileOutW = 32; tileOutH = 32; }
|
300 |
+
if (p.upx == 1 && p.upy == 2 && p.downx == 1 && p.downy == 1 && p.kernelW <= 1 && p.kernelH <= 16) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,2, 1,1, 1,16, 32,32>; tileOutW = 32; tileOutH = 32; }
|
301 |
+
if (p.upx == 1 && p.upy == 2 && p.downx == 1 && p.downy == 1 && p.kernelW <= 1 && p.kernelH <= 12) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,2, 1,1, 1,12, 32,32>; tileOutW = 32; tileOutH = 32; }
|
302 |
+
if (p.upx == 1 && p.upy == 2 && p.downx == 1 && p.downy == 1 && p.kernelW <= 1 && p.kernelH <= 8 ) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,2, 1,1, 1,8, 32,32>; tileOutW = 32; tileOutH = 32; }
|
303 |
+
|
304 |
+
if (p.upx == 1 && p.upy == 1 && p.downx == 2 && p.downy == 2 && p.kernelW <= 8 && p.kernelH <= 8 ) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 2,2, 8,8, 32,8 >; tileOutW = 32; tileOutH = 8; }
|
305 |
+
if (p.upx == 1 && p.upy == 1 && p.downx == 2 && p.downy == 2 && p.kernelW <= 6 && p.kernelH <= 6 ) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 2,2, 6,6, 32,8 >; tileOutW = 32; tileOutH = 8; }
|
306 |
+
if (p.upx == 1 && p.upy == 1 && p.downx == 2 && p.downy == 2 && p.kernelW <= 4 && p.kernelH <= 4 ) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 2,2, 4,4, 32,8 >; tileOutW = 32; tileOutH = 8; }
|
307 |
+
if (p.upx == 1 && p.upy == 1 && p.downx == 2 && p.downy == 2 && p.kernelW <= 2 && p.kernelH <= 2 ) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 2,2, 2,2, 32,8 >; tileOutW = 32; tileOutH = 8; }
|
308 |
+
if (p.upx == 1 && p.upy == 1 && p.downx == 2 && p.downy == 1 && p.kernelW <= 24 && p.kernelH <= 1 ) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 2,1, 24,1, 64,8 >; tileOutW = 64; tileOutH = 8; }
|
309 |
+
if (p.upx == 1 && p.upy == 1 && p.downx == 2 && p.downy == 1 && p.kernelW <= 20 && p.kernelH <= 1 ) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 2,1, 20,1, 64,8 >; tileOutW = 64; tileOutH = 8; }
|
310 |
+
if (p.upx == 1 && p.upy == 1 && p.downx == 2 && p.downy == 1 && p.kernelW <= 16 && p.kernelH <= 1 ) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 2,1, 16,1, 64,8 >; tileOutW = 64; tileOutH = 8; }
|
311 |
+
if (p.upx == 1 && p.upy == 1 && p.downx == 2 && p.downy == 1 && p.kernelW <= 12 && p.kernelH <= 1 ) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 2,1, 12,1, 64,8 >; tileOutW = 64; tileOutH = 8; }
|
312 |
+
if (p.upx == 1 && p.upy == 1 && p.downx == 2 && p.downy == 1 && p.kernelW <= 8 && p.kernelH <= 1 ) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 2,1, 8,1, 64,8 >; tileOutW = 64; tileOutH = 8; }
|
313 |
+
if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 2 && p.kernelW <= 1 && p.kernelH <= 24) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,2, 1,24, 32,16>; tileOutW = 32; tileOutH = 16; }
|
314 |
+
if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 2 && p.kernelW <= 1 && p.kernelH <= 20) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,2, 1,20, 32,16>; tileOutW = 32; tileOutH = 16; }
|
315 |
+
if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 2 && p.kernelW <= 1 && p.kernelH <= 16) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,2, 1,16, 32,16>; tileOutW = 32; tileOutH = 16; }
|
316 |
+
if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 2 && p.kernelW <= 1 && p.kernelH <= 12) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,2, 1,12, 32,16>; tileOutW = 32; tileOutH = 16; }
|
317 |
+
if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 2 && p.kernelW <= 1 && p.kernelH <= 8 ) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,2, 1,8, 32,16>; tileOutW = 32; tileOutH = 16; }
|
318 |
+
|
319 |
+
// Choose launch params.
|
320 |
+
dim3 blockSize;
|
321 |
+
dim3 gridSize;
|
322 |
+
if (tileOutW > 0 && tileOutH > 0) // small
|
323 |
+
{
|
324 |
+
p.loopMajor = (p.majorDim - 1) / 16384 + 1;
|
325 |
+
p.loopX = 1;
|
326 |
+
blockSize = dim3(32 * 8, 1, 1);
|
327 |
+
gridSize = dim3(((p.outH - 1) / tileOutH + 1) * p.minorDim, (p.outW - 1) / (p.loopX * tileOutW) + 1, (p.majorDim - 1) / p.loopMajor + 1);
|
328 |
+
}
|
329 |
+
else // large
|
330 |
+
{
|
331 |
+
p.loopMajor = (p.majorDim - 1) / 16384 + 1;
|
332 |
+
p.loopX = 4;
|
333 |
+
blockSize = dim3(4, 32, 1);
|
334 |
+
gridSize = dim3((p.outH * p.minorDim - 1) / blockSize.x + 1, (p.outW - 1) / (p.loopX * blockSize.y) + 1, (p.majorDim - 1) / p.loopMajor + 1);
|
335 |
+
}
|
336 |
+
|
337 |
+
// Launch CUDA kernel.
|
338 |
+
void* args[] = {&p};
|
339 |
+
OP_CHECK_CUDA_ERROR(ctx, cudaLaunchKernel(cudaKernel, gridSize, blockSize, args, 0, stream));
|
340 |
+
}
|
341 |
+
};
|
342 |
+
|
343 |
+
REGISTER_OP("UpFirDn2D")
|
344 |
+
.Input ("x: T")
|
345 |
+
.Input ("k: T")
|
346 |
+
.Output ("y: T")
|
347 |
+
.Attr ("T: {float, half}")
|
348 |
+
.Attr ("upx: int = 1")
|
349 |
+
.Attr ("upy: int = 1")
|
350 |
+
.Attr ("downx: int = 1")
|
351 |
+
.Attr ("downy: int = 1")
|
352 |
+
.Attr ("padx0: int = 0")
|
353 |
+
.Attr ("padx1: int = 0")
|
354 |
+
.Attr ("pady0: int = 0")
|
355 |
+
.Attr ("pady1: int = 0");
|
356 |
+
REGISTER_KERNEL_BUILDER(Name("UpFirDn2D").Device(DEVICE_GPU).TypeConstraint<float>("T"), UpFirDn2DOp<float>);
|
357 |
+
REGISTER_KERNEL_BUILDER(Name("UpFirDn2D").Device(DEVICE_GPU).TypeConstraint<Eigen::half>("T"), UpFirDn2DOp<Eigen::half>);
|
358 |
+
|
359 |
+
//------------------------------------------------------------------------
|
PTI/models/StyleCLIP/global_directions/dnnlib/tflib/ops/upfirdn_2d.py
ADDED
@@ -0,0 +1,418 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
"""Custom TensorFlow ops for efficient resampling of 2D images."""
|
10 |
+
|
11 |
+
import os
|
12 |
+
import numpy as np
|
13 |
+
import tensorflow as tf
|
14 |
+
from .. import custom_ops
|
15 |
+
|
16 |
+
def _get_plugin():
|
17 |
+
return custom_ops.get_plugin(os.path.splitext(__file__)[0] + '.cu')
|
18 |
+
|
19 |
+
#----------------------------------------------------------------------------
|
20 |
+
|
21 |
+
def upfirdn_2d(x, k, upx=1, upy=1, downx=1, downy=1, padx0=0, padx1=0, pady0=0, pady1=0, impl='cuda'):
|
22 |
+
r"""Pad, upsample, FIR filter, and downsample a batch of 2D images.
|
23 |
+
|
24 |
+
Accepts a batch of 2D images of the shape `[majorDim, inH, inW, minorDim]`
|
25 |
+
and performs the following operations for each image, batched across
|
26 |
+
`majorDim` and `minorDim`:
|
27 |
+
|
28 |
+
1. Upsample the image by inserting the zeros after each pixel (`upx`, `upy`).
|
29 |
+
|
30 |
+
2. Pad the image with zeros by the specified number of pixels on each side
|
31 |
+
(`padx0`, `padx1`, `pady0`, `pady1`). Specifying a negative value
|
32 |
+
corresponds to cropping the image.
|
33 |
+
|
34 |
+
3. Convolve the image with the specified 2D FIR filter (`k`), shrinking the
|
35 |
+
image so that the footprint of all output pixels lies within the input image.
|
36 |
+
|
37 |
+
4. Downsample the image by throwing away pixels (`downx`, `downy`).
|
38 |
+
|
39 |
+
This sequence of operations bears close resemblance to scipy.signal.upfirdn().
|
40 |
+
The fused op is considerably more efficient than performing the same calculation
|
41 |
+
using standard TensorFlow ops. It supports gradients of arbitrary order.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
x: Input tensor of the shape `[majorDim, inH, inW, minorDim]`.
|
45 |
+
k: 2D FIR filter of the shape `[firH, firW]`.
|
46 |
+
upx: Integer upsampling factor along the X-axis (default: 1).
|
47 |
+
upy: Integer upsampling factor along the Y-axis (default: 1).
|
48 |
+
downx: Integer downsampling factor along the X-axis (default: 1).
|
49 |
+
downy: Integer downsampling factor along the Y-axis (default: 1).
|
50 |
+
padx0: Number of pixels to pad on the left side (default: 0).
|
51 |
+
padx1: Number of pixels to pad on the right side (default: 0).
|
52 |
+
pady0: Number of pixels to pad on the top side (default: 0).
|
53 |
+
pady1: Number of pixels to pad on the bottom side (default: 0).
|
54 |
+
impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default).
|
55 |
+
|
56 |
+
Returns:
|
57 |
+
Tensor of the shape `[majorDim, outH, outW, minorDim]`, and same datatype as `x`.
|
58 |
+
"""
|
59 |
+
|
60 |
+
impl_dict = {
|
61 |
+
'ref': _upfirdn_2d_ref,
|
62 |
+
'cuda': _upfirdn_2d_cuda,
|
63 |
+
}
|
64 |
+
return impl_dict[impl](x=x, k=k, upx=upx, upy=upy, downx=downx, downy=downy, padx0=padx0, padx1=padx1, pady0=pady0, pady1=pady1)
|
65 |
+
|
66 |
+
#----------------------------------------------------------------------------
|
67 |
+
|
68 |
+
def _upfirdn_2d_ref(x, k, upx, upy, downx, downy, padx0, padx1, pady0, pady1):
|
69 |
+
"""Slow reference implementation of `upfirdn_2d()` using standard TensorFlow ops."""
|
70 |
+
|
71 |
+
x = tf.convert_to_tensor(x)
|
72 |
+
k = np.asarray(k, dtype=np.float32)
|
73 |
+
assert x.shape.rank == 4
|
74 |
+
inH = x.shape[1].value
|
75 |
+
inW = x.shape[2].value
|
76 |
+
minorDim = _shape(x, 3)
|
77 |
+
kernelH, kernelW = k.shape
|
78 |
+
assert inW >= 1 and inH >= 1
|
79 |
+
assert kernelW >= 1 and kernelH >= 1
|
80 |
+
assert isinstance(upx, int) and isinstance(upy, int)
|
81 |
+
assert isinstance(downx, int) and isinstance(downy, int)
|
82 |
+
assert isinstance(padx0, int) and isinstance(padx1, int)
|
83 |
+
assert isinstance(pady0, int) and isinstance(pady1, int)
|
84 |
+
|
85 |
+
# Upsample (insert zeros).
|
86 |
+
x = tf.reshape(x, [-1, inH, 1, inW, 1, minorDim])
|
87 |
+
x = tf.pad(x, [[0, 0], [0, 0], [0, upy - 1], [0, 0], [0, upx - 1], [0, 0]])
|
88 |
+
x = tf.reshape(x, [-1, inH * upy, inW * upx, minorDim])
|
89 |
+
|
90 |
+
# Pad (crop if negative).
|
91 |
+
x = tf.pad(x, [[0, 0], [max(pady0, 0), max(pady1, 0)], [max(padx0, 0), max(padx1, 0)], [0, 0]])
|
92 |
+
x = x[:, max(-pady0, 0) : x.shape[1].value - max(-pady1, 0), max(-padx0, 0) : x.shape[2].value - max(-padx1, 0), :]
|
93 |
+
|
94 |
+
# Convolve with filter.
|
95 |
+
x = tf.transpose(x, [0, 3, 1, 2])
|
96 |
+
x = tf.reshape(x, [-1, 1, inH * upy + pady0 + pady1, inW * upx + padx0 + padx1])
|
97 |
+
w = tf.constant(k[::-1, ::-1, np.newaxis, np.newaxis], dtype=x.dtype)
|
98 |
+
x = tf.nn.conv2d(x, w, strides=[1,1,1,1], padding='VALID', data_format='NCHW')
|
99 |
+
x = tf.reshape(x, [-1, minorDim, inH * upy + pady0 + pady1 - kernelH + 1, inW * upx + padx0 + padx1 - kernelW + 1])
|
100 |
+
x = tf.transpose(x, [0, 2, 3, 1])
|
101 |
+
|
102 |
+
# Downsample (throw away pixels).
|
103 |
+
return x[:, ::downy, ::downx, :]
|
104 |
+
|
105 |
+
#----------------------------------------------------------------------------
|
106 |
+
|
107 |
+
def _upfirdn_2d_cuda(x, k, upx, upy, downx, downy, padx0, padx1, pady0, pady1):
|
108 |
+
"""Fast CUDA implementation of `upfirdn_2d()` using custom ops."""
|
109 |
+
|
110 |
+
x = tf.convert_to_tensor(x)
|
111 |
+
k = np.asarray(k, dtype=np.float32)
|
112 |
+
majorDim, inH, inW, minorDim = x.shape.as_list()
|
113 |
+
kernelH, kernelW = k.shape
|
114 |
+
assert inW >= 1 and inH >= 1
|
115 |
+
assert kernelW >= 1 and kernelH >= 1
|
116 |
+
assert isinstance(upx, int) and isinstance(upy, int)
|
117 |
+
assert isinstance(downx, int) and isinstance(downy, int)
|
118 |
+
assert isinstance(padx0, int) and isinstance(padx1, int)
|
119 |
+
assert isinstance(pady0, int) and isinstance(pady1, int)
|
120 |
+
|
121 |
+
outW = (inW * upx + padx0 + padx1 - kernelW) // downx + 1
|
122 |
+
outH = (inH * upy + pady0 + pady1 - kernelH) // downy + 1
|
123 |
+
assert outW >= 1 and outH >= 1
|
124 |
+
|
125 |
+
cuda_op = _get_plugin().up_fir_dn2d
|
126 |
+
kc = tf.constant(k, dtype=x.dtype)
|
127 |
+
gkc = tf.constant(k[::-1, ::-1], dtype=x.dtype)
|
128 |
+
gpadx0 = kernelW - padx0 - 1
|
129 |
+
gpady0 = kernelH - pady0 - 1
|
130 |
+
gpadx1 = inW * upx - outW * downx + padx0 - upx + 1
|
131 |
+
gpady1 = inH * upy - outH * downy + pady0 - upy + 1
|
132 |
+
|
133 |
+
@tf.custom_gradient
|
134 |
+
def func(x):
|
135 |
+
y = cuda_op(x=x, k=kc, upx=int(upx), upy=int(upy), downx=int(downx), downy=int(downy), padx0=int(padx0), padx1=int(padx1), pady0=int(pady0), pady1=int(pady1))
|
136 |
+
y.set_shape([majorDim, outH, outW, minorDim])
|
137 |
+
@tf.custom_gradient
|
138 |
+
def grad(dy):
|
139 |
+
dx = cuda_op(x=dy, k=gkc, upx=int(downx), upy=int(downy), downx=int(upx), downy=int(upy), padx0=int(gpadx0), padx1=int(gpadx1), pady0=int(gpady0), pady1=int(gpady1))
|
140 |
+
dx.set_shape([majorDim, inH, inW, minorDim])
|
141 |
+
return dx, func
|
142 |
+
return y, grad
|
143 |
+
return func(x)
|
144 |
+
|
145 |
+
#----------------------------------------------------------------------------
|
146 |
+
|
147 |
+
def filter_2d(x, k, gain=1, padding=0, data_format='NCHW', impl='cuda'):
|
148 |
+
r"""Filter a batch of 2D images with the given FIR filter.
|
149 |
+
|
150 |
+
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]`
|
151 |
+
and filters each image with the given filter. The filter is normalized so that
|
152 |
+
if the input pixels are constant, they will be scaled by the specified `gain`.
|
153 |
+
Pixels outside the image are assumed to be zero.
|
154 |
+
|
155 |
+
Args:
|
156 |
+
x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
|
157 |
+
k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable).
|
158 |
+
gain: Scaling factor for signal magnitude (default: 1.0).
|
159 |
+
padding: Number of pixels to pad or crop the output on each side (default: 0).
|
160 |
+
data_format: `'NCHW'` or `'NHWC'` (default: `'NCHW'`).
|
161 |
+
impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default).
|
162 |
+
|
163 |
+
Returns:
|
164 |
+
Tensor of the same shape and datatype as `x`.
|
165 |
+
"""
|
166 |
+
|
167 |
+
assert isinstance(padding, int)
|
168 |
+
k = _FilterKernel(k=k, gain=gain)
|
169 |
+
assert k.w == k.h
|
170 |
+
pad0 = k.w // 2 + padding
|
171 |
+
pad1 = (k.w - 1) // 2 + padding
|
172 |
+
return _simple_upfirdn_2d(x, k, pad0=pad0, pad1=pad1, data_format=data_format, impl=impl)
|
173 |
+
|
174 |
+
#----------------------------------------------------------------------------
|
175 |
+
|
176 |
+
def upsample_2d(x, k=None, factor=2, gain=1, padding=0, data_format='NCHW', impl='cuda'):
|
177 |
+
r"""Upsample a batch of 2D images with the given filter.
|
178 |
+
|
179 |
+
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]`
|
180 |
+
and upsamples each image with the given filter. The filter is normalized so that
|
181 |
+
if the input pixels are constant, they will be scaled by the specified `gain`.
|
182 |
+
Pixels outside the image are assumed to be zero, and the filter is padded with
|
183 |
+
zeros so that its shape is a multiple of the upsampling factor.
|
184 |
+
|
185 |
+
Args:
|
186 |
+
x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
|
187 |
+
k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable).
|
188 |
+
The default is `[1] * factor`, which corresponds to nearest-neighbor
|
189 |
+
upsampling.
|
190 |
+
factor: Integer upsampling factor (default: 2).
|
191 |
+
gain: Scaling factor for signal magnitude (default: 1.0).
|
192 |
+
padding: Number of pixels to pad or crop the output on each side (default: 0).
|
193 |
+
data_format: `'NCHW'` or `'NHWC'` (default: `'NCHW'`).
|
194 |
+
impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default).
|
195 |
+
|
196 |
+
Returns:
|
197 |
+
Tensor of the shape `[N, C, H * factor, W * factor]` or
|
198 |
+
`[N, H * factor, W * factor, C]`, and same datatype as `x`.
|
199 |
+
"""
|
200 |
+
|
201 |
+
assert isinstance(factor, int) and factor >= 1
|
202 |
+
assert isinstance(padding, int)
|
203 |
+
k = _FilterKernel(k if k is not None else [1] * factor, gain * (factor ** 2))
|
204 |
+
assert k.w == k.h
|
205 |
+
pad0 = (k.w + factor - 1) // 2 + padding
|
206 |
+
pad1 = (k.w - factor) // 2 + padding
|
207 |
+
return _simple_upfirdn_2d(x, k, up=factor, pad0=pad0, pad1=pad1, data_format=data_format, impl=impl)
|
208 |
+
|
209 |
+
#----------------------------------------------------------------------------
|
210 |
+
|
211 |
+
def downsample_2d(x, k=None, factor=2, gain=1, padding=0, data_format='NCHW', impl='cuda'):
|
212 |
+
r"""Downsample a batch of 2D images with the given filter.
|
213 |
+
|
214 |
+
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]`
|
215 |
+
and downsamples each image with the given filter. The filter is normalized so that
|
216 |
+
if the input pixels are constant, they will be scaled by the specified `gain`.
|
217 |
+
Pixels outside the image are assumed to be zero, and the filter is padded with
|
218 |
+
zeros so that its shape is a multiple of the downsampling factor.
|
219 |
+
|
220 |
+
Args:
|
221 |
+
x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
|
222 |
+
k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable).
|
223 |
+
The default is `[1] * factor`, which corresponds to average pooling.
|
224 |
+
factor: Integer downsampling factor (default: 2).
|
225 |
+
gain: Scaling factor for signal magnitude (default: 1.0).
|
226 |
+
padding: Number of pixels to pad or crop the output on each side (default: 0).
|
227 |
+
data_format: `'NCHW'` or `'NHWC'` (default: `'NCHW'`).
|
228 |
+
impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default).
|
229 |
+
|
230 |
+
Returns:
|
231 |
+
Tensor of the shape `[N, C, H // factor, W // factor]` or
|
232 |
+
`[N, H // factor, W // factor, C]`, and same datatype as `x`.
|
233 |
+
"""
|
234 |
+
|
235 |
+
assert isinstance(factor, int) and factor >= 1
|
236 |
+
assert isinstance(padding, int)
|
237 |
+
k = _FilterKernel(k if k is not None else [1] * factor, gain)
|
238 |
+
assert k.w == k.h
|
239 |
+
pad0 = (k.w - factor + 1) // 2 + padding * factor
|
240 |
+
pad1 = (k.w - factor) // 2 + padding * factor
|
241 |
+
return _simple_upfirdn_2d(x, k, down=factor, pad0=pad0, pad1=pad1, data_format=data_format, impl=impl)
|
242 |
+
|
243 |
+
#----------------------------------------------------------------------------
|
244 |
+
|
245 |
+
def upsample_conv_2d(x, w, k=None, factor=2, gain=1, padding=0, data_format='NCHW', impl='cuda'):
|
246 |
+
r"""Fused `upsample_2d()` followed by `tf.nn.conv2d()`.
|
247 |
+
|
248 |
+
Padding is performed only once at the beginning, not between the operations.
|
249 |
+
The fused op is considerably more efficient than performing the same calculation
|
250 |
+
using standard TensorFlow ops. It supports gradients of arbitrary order.
|
251 |
+
|
252 |
+
Args:
|
253 |
+
x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
|
254 |
+
w: Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`.
|
255 |
+
Grouped convolution can be performed by `inChannels = x.shape[0] // numGroups`.
|
256 |
+
k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable).
|
257 |
+
The default is `[1] * factor`, which corresponds to nearest-neighbor
|
258 |
+
upsampling.
|
259 |
+
factor: Integer upsampling factor (default: 2).
|
260 |
+
gain: Scaling factor for signal magnitude (default: 1.0).
|
261 |
+
padding: Number of pixels to pad or crop the output on each side (default: 0).
|
262 |
+
data_format: `'NCHW'` or `'NHWC'` (default: `'NCHW'`).
|
263 |
+
impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default).
|
264 |
+
|
265 |
+
Returns:
|
266 |
+
Tensor of the shape `[N, C, H * factor, W * factor]` or
|
267 |
+
`[N, H * factor, W * factor, C]`, and same datatype as `x`.
|
268 |
+
"""
|
269 |
+
|
270 |
+
assert isinstance(factor, int) and factor >= 1
|
271 |
+
assert isinstance(padding, int)
|
272 |
+
|
273 |
+
# Check weight shape.
|
274 |
+
w = tf.convert_to_tensor(w)
|
275 |
+
ch, cw, _inC, _outC = w.shape.as_list()
|
276 |
+
inC = _shape(w, 2)
|
277 |
+
outC = _shape(w, 3)
|
278 |
+
assert cw == ch
|
279 |
+
|
280 |
+
# Fast path for 1x1 convolution.
|
281 |
+
if cw == 1 and ch == 1:
|
282 |
+
x = tf.nn.conv2d(x, w, data_format=data_format, strides=[1,1,1,1], padding='VALID')
|
283 |
+
x = upsample_2d(x, k, factor=factor, gain=gain, padding=padding, data_format=data_format, impl=impl)
|
284 |
+
return x
|
285 |
+
|
286 |
+
# Setup filter kernel.
|
287 |
+
k = _FilterKernel(k if k is not None else [1] * factor, gain * (factor ** 2))
|
288 |
+
assert k.w == k.h
|
289 |
+
|
290 |
+
# Determine data dimensions.
|
291 |
+
if data_format == 'NCHW':
|
292 |
+
stride = [1, 1, factor, factor]
|
293 |
+
output_shape = [_shape(x, 0), outC, (_shape(x, 2) - 1) * factor + ch, (_shape(x, 3) - 1) * factor + cw]
|
294 |
+
num_groups = _shape(x, 1) // inC
|
295 |
+
else:
|
296 |
+
stride = [1, factor, factor, 1]
|
297 |
+
output_shape = [_shape(x, 0), (_shape(x, 1) - 1) * factor + ch, (_shape(x, 2) - 1) * factor + cw, outC]
|
298 |
+
num_groups = _shape(x, 3) // inC
|
299 |
+
|
300 |
+
# Transpose weights.
|
301 |
+
w = tf.reshape(w, [ch, cw, inC, num_groups, -1])
|
302 |
+
w = tf.transpose(w[::-1, ::-1], [0, 1, 4, 3, 2])
|
303 |
+
w = tf.reshape(w, [ch, cw, -1, num_groups * inC])
|
304 |
+
|
305 |
+
# Execute.
|
306 |
+
x = tf.nn.conv2d_transpose(x, w, output_shape=output_shape, strides=stride, padding='VALID', data_format=data_format)
|
307 |
+
pad0 = (k.w + factor - cw) // 2 + padding
|
308 |
+
pad1 = (k.w - factor - cw + 3) // 2 + padding
|
309 |
+
return _simple_upfirdn_2d(x, k, pad0=pad0, pad1=pad1, data_format=data_format, impl=impl)
|
310 |
+
|
311 |
+
#----------------------------------------------------------------------------
|
312 |
+
|
313 |
+
def conv_downsample_2d(x, w, k=None, factor=2, gain=1, padding=0, data_format='NCHW', impl='cuda'):
|
314 |
+
r"""Fused `tf.nn.conv2d()` followed by `downsample_2d()`.
|
315 |
+
|
316 |
+
Padding is performed only once at the beginning, not between the operations.
|
317 |
+
The fused op is considerably more efficient than performing the same calculation
|
318 |
+
using standard TensorFlow ops. It supports gradients of arbitrary order.
|
319 |
+
|
320 |
+
Args:
|
321 |
+
x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
|
322 |
+
w: Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`.
|
323 |
+
Grouped convolution can be performed by `inChannels = x.shape[0] // numGroups`.
|
324 |
+
k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable).
|
325 |
+
The default is `[1] * factor`, which corresponds to average pooling.
|
326 |
+
factor: Integer downsampling factor (default: 2).
|
327 |
+
gain: Scaling factor for signal magnitude (default: 1.0).
|
328 |
+
padding: Number of pixels to pad or crop the output on each side (default: 0).
|
329 |
+
data_format: `'NCHW'` or `'NHWC'` (default: `'NCHW'`).
|
330 |
+
impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default).
|
331 |
+
|
332 |
+
Returns:
|
333 |
+
Tensor of the shape `[N, C, H // factor, W // factor]` or
|
334 |
+
`[N, H // factor, W // factor, C]`, and same datatype as `x`.
|
335 |
+
"""
|
336 |
+
|
337 |
+
assert isinstance(factor, int) and factor >= 1
|
338 |
+
assert isinstance(padding, int)
|
339 |
+
|
340 |
+
# Check weight shape.
|
341 |
+
w = tf.convert_to_tensor(w)
|
342 |
+
ch, cw, _inC, _outC = w.shape.as_list()
|
343 |
+
assert cw == ch
|
344 |
+
|
345 |
+
# Fast path for 1x1 convolution.
|
346 |
+
if cw == 1 and ch == 1:
|
347 |
+
x = downsample_2d(x, k, factor=factor, gain=gain, padding=padding, data_format=data_format, impl=impl)
|
348 |
+
x = tf.nn.conv2d(x, w, data_format=data_format, strides=[1,1,1,1], padding='VALID')
|
349 |
+
return x
|
350 |
+
|
351 |
+
# Setup filter kernel.
|
352 |
+
k = _FilterKernel(k if k is not None else [1] * factor, gain)
|
353 |
+
assert k.w == k.h
|
354 |
+
|
355 |
+
# Determine stride.
|
356 |
+
if data_format == 'NCHW':
|
357 |
+
s = [1, 1, factor, factor]
|
358 |
+
else:
|
359 |
+
s = [1, factor, factor, 1]
|
360 |
+
|
361 |
+
# Execute.
|
362 |
+
pad0 = (k.w - factor + cw) // 2 + padding * factor
|
363 |
+
pad1 = (k.w - factor + cw - 1) // 2 + padding * factor
|
364 |
+
x = _simple_upfirdn_2d(x, k, pad0=pad0, pad1=pad1, data_format=data_format, impl=impl)
|
365 |
+
return tf.nn.conv2d(x, w, strides=s, padding='VALID', data_format=data_format)
|
366 |
+
|
367 |
+
#----------------------------------------------------------------------------
|
368 |
+
# Internal helpers.
|
369 |
+
|
370 |
+
class _FilterKernel:
|
371 |
+
def __init__(self, k, gain=1):
|
372 |
+
k = np.asarray(k, dtype=np.float32)
|
373 |
+
k /= np.sum(k)
|
374 |
+
|
375 |
+
# Separable.
|
376 |
+
if k.ndim == 1 and k.size >= 8:
|
377 |
+
self.w = k.size
|
378 |
+
self.h = k.size
|
379 |
+
self.kx = k[np.newaxis, :]
|
380 |
+
self.ky = k[:, np.newaxis] * gain
|
381 |
+
self.kxy = None
|
382 |
+
|
383 |
+
# Non-separable.
|
384 |
+
else:
|
385 |
+
if k.ndim == 1:
|
386 |
+
k = np.outer(k, k)
|
387 |
+
assert k.ndim == 2
|
388 |
+
self.w = k.shape[1]
|
389 |
+
self.h = k.shape[0]
|
390 |
+
self.kx = None
|
391 |
+
self.ky = None
|
392 |
+
self.kxy = k * gain
|
393 |
+
|
394 |
+
def _simple_upfirdn_2d(x, k, up=1, down=1, pad0=0, pad1=0, data_format='NCHW', impl='cuda'):
|
395 |
+
assert isinstance(k, _FilterKernel)
|
396 |
+
assert data_format in ['NCHW', 'NHWC']
|
397 |
+
assert x.shape.rank == 4
|
398 |
+
y = x
|
399 |
+
if data_format == 'NCHW':
|
400 |
+
y = tf.reshape(y, [-1, _shape(y, 2), _shape(y, 3), 1])
|
401 |
+
if k.kx is not None:
|
402 |
+
y = upfirdn_2d(y, k.kx, upx=up, downx=down, padx0=pad0, padx1=pad1, impl=impl)
|
403 |
+
if k.ky is not None:
|
404 |
+
y = upfirdn_2d(y, k.ky, upy=up, downy=down, pady0=pad0, pady1=pad1, impl=impl)
|
405 |
+
if k.kxy is not None:
|
406 |
+
y = upfirdn_2d(y, k.kxy, upx=up, upy=up, downx=down, downy=down, padx0=pad0, padx1=pad1, pady0=pad0, pady1=pad1, impl=impl)
|
407 |
+
if data_format == 'NCHW':
|
408 |
+
y = tf.reshape(y, [-1, _shape(x, 1), _shape(y, 1), _shape(y, 2)])
|
409 |
+
return y
|
410 |
+
|
411 |
+
def _shape(tf_expr, dim_idx):
|
412 |
+
if tf_expr.shape.rank is not None:
|
413 |
+
dim = tf_expr.shape[dim_idx].value
|
414 |
+
if dim is not None:
|
415 |
+
return dim
|
416 |
+
return tf.shape(tf_expr)[dim_idx]
|
417 |
+
|
418 |
+
#----------------------------------------------------------------------------
|
PTI/models/StyleCLIP/global_directions/dnnlib/tflib/optimizer.py
ADDED
@@ -0,0 +1,372 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
"""Helper wrapper for a Tensorflow optimizer."""
|
10 |
+
|
11 |
+
import platform
|
12 |
+
import numpy as np
|
13 |
+
import tensorflow as tf
|
14 |
+
|
15 |
+
from collections import OrderedDict
|
16 |
+
from typing import List, Union
|
17 |
+
|
18 |
+
from . import autosummary
|
19 |
+
from . import tfutil
|
20 |
+
from .. import util
|
21 |
+
|
22 |
+
from .tfutil import TfExpression, TfExpressionEx
|
23 |
+
|
24 |
+
_collective_ops_warning_printed = False
|
25 |
+
_collective_ops_group_key = 831766147
|
26 |
+
_collective_ops_instance_key = 436340067
|
27 |
+
|
28 |
+
class Optimizer:
|
29 |
+
"""A Wrapper for tf.train.Optimizer.
|
30 |
+
|
31 |
+
Automatically takes care of:
|
32 |
+
- Gradient averaging for multi-GPU training.
|
33 |
+
- Gradient accumulation for arbitrarily large minibatches.
|
34 |
+
- Dynamic loss scaling and typecasts for FP16 training.
|
35 |
+
- Ignoring corrupted gradients that contain NaNs/Infs.
|
36 |
+
- Reporting statistics.
|
37 |
+
- Well-chosen default settings.
|
38 |
+
"""
|
39 |
+
|
40 |
+
def __init__(self,
|
41 |
+
name: str = "Train", # Name string that will appear in TensorFlow graph.
|
42 |
+
tf_optimizer: str = "tf.train.AdamOptimizer", # Underlying optimizer class.
|
43 |
+
learning_rate: TfExpressionEx = 0.001, # Learning rate. Can vary over time.
|
44 |
+
minibatch_multiplier: TfExpressionEx = None, # Treat N consecutive minibatches as one by accumulating gradients.
|
45 |
+
share: "Optimizer" = None, # Share internal state with a previously created optimizer?
|
46 |
+
use_loss_scaling: bool = False, # Enable dynamic loss scaling for robust mixed-precision training?
|
47 |
+
loss_scaling_init: float = 64.0, # Log2 of initial loss scaling factor.
|
48 |
+
loss_scaling_inc: float = 0.0005, # Log2 of per-minibatch loss scaling increment when there is no overflow.
|
49 |
+
loss_scaling_dec: float = 1.0, # Log2 of per-minibatch loss scaling decrement when there is an overflow.
|
50 |
+
report_mem_usage: bool = False, # Report fine-grained memory usage statistics in TensorBoard?
|
51 |
+
**kwargs):
|
52 |
+
|
53 |
+
# Public fields.
|
54 |
+
self.name = name
|
55 |
+
self.learning_rate = learning_rate
|
56 |
+
self.minibatch_multiplier = minibatch_multiplier
|
57 |
+
self.id = self.name.replace("/", ".")
|
58 |
+
self.scope = tf.get_default_graph().unique_name(self.id)
|
59 |
+
self.optimizer_class = util.get_obj_by_name(tf_optimizer)
|
60 |
+
self.optimizer_kwargs = dict(kwargs)
|
61 |
+
self.use_loss_scaling = use_loss_scaling
|
62 |
+
self.loss_scaling_init = loss_scaling_init
|
63 |
+
self.loss_scaling_inc = loss_scaling_inc
|
64 |
+
self.loss_scaling_dec = loss_scaling_dec
|
65 |
+
|
66 |
+
# Private fields.
|
67 |
+
self._updates_applied = False
|
68 |
+
self._devices = OrderedDict() # device_name => EasyDict()
|
69 |
+
self._shared_optimizers = OrderedDict() # device_name => optimizer_class
|
70 |
+
self._gradient_shapes = None # [shape, ...]
|
71 |
+
self._report_mem_usage = report_mem_usage
|
72 |
+
|
73 |
+
# Validate arguments.
|
74 |
+
assert callable(self.optimizer_class)
|
75 |
+
|
76 |
+
# Share internal state if requested.
|
77 |
+
if share is not None:
|
78 |
+
assert isinstance(share, Optimizer)
|
79 |
+
assert self.optimizer_class is share.optimizer_class
|
80 |
+
assert self.learning_rate is share.learning_rate
|
81 |
+
assert self.optimizer_kwargs == share.optimizer_kwargs
|
82 |
+
self._shared_optimizers = share._shared_optimizers # pylint: disable=protected-access
|
83 |
+
|
84 |
+
def _get_device(self, device_name: str):
|
85 |
+
"""Get internal state for the given TensorFlow device."""
|
86 |
+
tfutil.assert_tf_initialized()
|
87 |
+
if device_name in self._devices:
|
88 |
+
return self._devices[device_name]
|
89 |
+
|
90 |
+
# Initialize fields.
|
91 |
+
device = util.EasyDict()
|
92 |
+
device.name = device_name
|
93 |
+
device.optimizer = None # Underlying optimizer: optimizer_class
|
94 |
+
device.loss_scaling_var = None # Log2 of loss scaling: tf.Variable
|
95 |
+
device.grad_raw = OrderedDict() # Raw gradients: var => [grad, ...]
|
96 |
+
device.grad_clean = OrderedDict() # Clean gradients: var => grad
|
97 |
+
device.grad_acc_vars = OrderedDict() # Accumulation sums: var => tf.Variable
|
98 |
+
device.grad_acc_count = None # Accumulation counter: tf.Variable
|
99 |
+
device.grad_acc = OrderedDict() # Accumulated gradients: var => grad
|
100 |
+
|
101 |
+
# Setup TensorFlow objects.
|
102 |
+
with tfutil.absolute_name_scope(self.scope + "/Devices"), tf.device(device_name), tf.control_dependencies(None):
|
103 |
+
if device_name not in self._shared_optimizers:
|
104 |
+
optimizer_name = self.scope.replace("/", "_") + "_opt%d" % len(self._shared_optimizers)
|
105 |
+
self._shared_optimizers[device_name] = self.optimizer_class(name=optimizer_name, learning_rate=self.learning_rate, **self.optimizer_kwargs)
|
106 |
+
device.optimizer = self._shared_optimizers[device_name]
|
107 |
+
if self.use_loss_scaling:
|
108 |
+
device.loss_scaling_var = tf.Variable(np.float32(self.loss_scaling_init), trainable=False, name="loss_scaling_var")
|
109 |
+
|
110 |
+
# Register device.
|
111 |
+
self._devices[device_name] = device
|
112 |
+
return device
|
113 |
+
|
114 |
+
def register_gradients(self, loss: TfExpression, trainable_vars: Union[List, dict]) -> None:
|
115 |
+
"""Register the gradients of the given loss function with respect to the given variables.
|
116 |
+
Intended to be called once per GPU."""
|
117 |
+
tfutil.assert_tf_initialized()
|
118 |
+
assert not self._updates_applied
|
119 |
+
device = self._get_device(loss.device)
|
120 |
+
|
121 |
+
# Validate trainables.
|
122 |
+
if isinstance(trainable_vars, dict):
|
123 |
+
trainable_vars = list(trainable_vars.values()) # allow passing in Network.trainables as vars
|
124 |
+
assert isinstance(trainable_vars, list) and len(trainable_vars) >= 1
|
125 |
+
assert all(tfutil.is_tf_expression(expr) for expr in trainable_vars + [loss])
|
126 |
+
assert all(var.device == device.name for var in trainable_vars)
|
127 |
+
|
128 |
+
# Validate shapes.
|
129 |
+
if self._gradient_shapes is None:
|
130 |
+
self._gradient_shapes = [var.shape.as_list() for var in trainable_vars]
|
131 |
+
assert len(trainable_vars) == len(self._gradient_shapes)
|
132 |
+
assert all(var.shape.as_list() == var_shape for var, var_shape in zip(trainable_vars, self._gradient_shapes))
|
133 |
+
|
134 |
+
# Report memory usage if requested.
|
135 |
+
deps = [loss]
|
136 |
+
if self._report_mem_usage:
|
137 |
+
self._report_mem_usage = False
|
138 |
+
try:
|
139 |
+
with tf.name_scope(self.id + '_mem'), tf.device(device.name), tf.control_dependencies([loss]):
|
140 |
+
deps.append(autosummary.autosummary(self.id + "/mem_usage_gb", tf.contrib.memory_stats.BytesInUse() / 2**30))
|
141 |
+
except tf.errors.NotFoundError:
|
142 |
+
pass
|
143 |
+
|
144 |
+
# Compute gradients.
|
145 |
+
with tf.name_scope(self.id + "_grad"), tf.device(device.name), tf.control_dependencies(deps):
|
146 |
+
loss = self.apply_loss_scaling(tf.cast(loss, tf.float32))
|
147 |
+
gate = tf.train.Optimizer.GATE_NONE # disable gating to reduce memory usage
|
148 |
+
grad_list = device.optimizer.compute_gradients(loss=loss, var_list=trainable_vars, gate_gradients=gate)
|
149 |
+
|
150 |
+
# Register gradients.
|
151 |
+
for grad, var in grad_list:
|
152 |
+
if var not in device.grad_raw:
|
153 |
+
device.grad_raw[var] = []
|
154 |
+
device.grad_raw[var].append(grad)
|
155 |
+
|
156 |
+
def apply_updates(self, allow_no_op: bool = False) -> tf.Operation:
|
157 |
+
"""Construct training op to update the registered variables based on their gradients."""
|
158 |
+
tfutil.assert_tf_initialized()
|
159 |
+
assert not self._updates_applied
|
160 |
+
self._updates_applied = True
|
161 |
+
all_ops = []
|
162 |
+
|
163 |
+
# Check for no-op.
|
164 |
+
if allow_no_op and len(self._devices) == 0:
|
165 |
+
with tfutil.absolute_name_scope(self.scope):
|
166 |
+
return tf.no_op(name='TrainingOp')
|
167 |
+
|
168 |
+
# Clean up gradients.
|
169 |
+
for device_idx, device in enumerate(self._devices.values()):
|
170 |
+
with tfutil.absolute_name_scope(self.scope + "/Clean%d" % device_idx), tf.device(device.name):
|
171 |
+
for var, grad in device.grad_raw.items():
|
172 |
+
|
173 |
+
# Filter out disconnected gradients and convert to float32.
|
174 |
+
grad = [g for g in grad if g is not None]
|
175 |
+
grad = [tf.cast(g, tf.float32) for g in grad]
|
176 |
+
|
177 |
+
# Sum within the device.
|
178 |
+
if len(grad) == 0:
|
179 |
+
grad = tf.zeros(var.shape) # No gradients => zero.
|
180 |
+
elif len(grad) == 1:
|
181 |
+
grad = grad[0] # Single gradient => use as is.
|
182 |
+
else:
|
183 |
+
grad = tf.add_n(grad) # Multiple gradients => sum.
|
184 |
+
|
185 |
+
# Scale as needed.
|
186 |
+
scale = 1.0 / len(device.grad_raw[var]) / len(self._devices)
|
187 |
+
scale = tf.constant(scale, dtype=tf.float32, name="scale")
|
188 |
+
if self.minibatch_multiplier is not None:
|
189 |
+
scale /= tf.cast(self.minibatch_multiplier, tf.float32)
|
190 |
+
scale = self.undo_loss_scaling(scale)
|
191 |
+
device.grad_clean[var] = grad * scale
|
192 |
+
|
193 |
+
# Sum gradients across devices.
|
194 |
+
if len(self._devices) > 1:
|
195 |
+
with tfutil.absolute_name_scope(self.scope + "/Broadcast"), tf.device(None):
|
196 |
+
if platform.system() == "Windows": # Windows => NCCL ops are not available.
|
197 |
+
self._broadcast_fallback()
|
198 |
+
elif tf.VERSION.startswith("1.15."): # TF 1.15 => NCCL ops are broken: https://github.com/tensorflow/tensorflow/issues/41539
|
199 |
+
self._broadcast_fallback()
|
200 |
+
else: # Otherwise => NCCL ops are safe to use.
|
201 |
+
self._broadcast_nccl()
|
202 |
+
|
203 |
+
# Apply updates separately on each device.
|
204 |
+
for device_idx, device in enumerate(self._devices.values()):
|
205 |
+
with tfutil.absolute_name_scope(self.scope + "/Apply%d" % device_idx), tf.device(device.name):
|
206 |
+
# pylint: disable=cell-var-from-loop
|
207 |
+
|
208 |
+
# Accumulate gradients over time.
|
209 |
+
if self.minibatch_multiplier is None:
|
210 |
+
acc_ok = tf.constant(True, name='acc_ok')
|
211 |
+
device.grad_acc = OrderedDict(device.grad_clean)
|
212 |
+
else:
|
213 |
+
# Create variables.
|
214 |
+
with tf.control_dependencies(None):
|
215 |
+
for var in device.grad_clean.keys():
|
216 |
+
device.grad_acc_vars[var] = tf.Variable(tf.zeros(var.shape), trainable=False, name="grad_acc_var")
|
217 |
+
device.grad_acc_count = tf.Variable(tf.zeros([]), trainable=False, name="grad_acc_count")
|
218 |
+
|
219 |
+
# Track counter.
|
220 |
+
count_cur = device.grad_acc_count + 1.0
|
221 |
+
count_inc_op = lambda: tf.assign(device.grad_acc_count, count_cur)
|
222 |
+
count_reset_op = lambda: tf.assign(device.grad_acc_count, tf.zeros([]))
|
223 |
+
acc_ok = (count_cur >= tf.cast(self.minibatch_multiplier, tf.float32))
|
224 |
+
all_ops.append(tf.cond(acc_ok, count_reset_op, count_inc_op))
|
225 |
+
|
226 |
+
# Track gradients.
|
227 |
+
for var, grad in device.grad_clean.items():
|
228 |
+
acc_var = device.grad_acc_vars[var]
|
229 |
+
acc_cur = acc_var + grad
|
230 |
+
device.grad_acc[var] = acc_cur
|
231 |
+
with tf.control_dependencies([acc_cur]):
|
232 |
+
acc_inc_op = lambda: tf.assign(acc_var, acc_cur)
|
233 |
+
acc_reset_op = lambda: tf.assign(acc_var, tf.zeros(var.shape))
|
234 |
+
all_ops.append(tf.cond(acc_ok, acc_reset_op, acc_inc_op))
|
235 |
+
|
236 |
+
# No overflow => apply gradients.
|
237 |
+
all_ok = tf.reduce_all(tf.stack([acc_ok] + [tf.reduce_all(tf.is_finite(g)) for g in device.grad_acc.values()]))
|
238 |
+
apply_op = lambda: device.optimizer.apply_gradients([(tf.cast(grad, var.dtype), var) for var, grad in device.grad_acc.items()])
|
239 |
+
all_ops.append(tf.cond(all_ok, apply_op, tf.no_op))
|
240 |
+
|
241 |
+
# Adjust loss scaling.
|
242 |
+
if self.use_loss_scaling:
|
243 |
+
ls_inc_op = lambda: tf.assign_add(device.loss_scaling_var, self.loss_scaling_inc)
|
244 |
+
ls_dec_op = lambda: tf.assign_sub(device.loss_scaling_var, self.loss_scaling_dec)
|
245 |
+
ls_update_op = lambda: tf.group(tf.cond(all_ok, ls_inc_op, ls_dec_op))
|
246 |
+
all_ops.append(tf.cond(acc_ok, ls_update_op, tf.no_op))
|
247 |
+
|
248 |
+
# Last device => report statistics.
|
249 |
+
if device_idx == len(self._devices) - 1:
|
250 |
+
all_ops.append(autosummary.autosummary(self.id + "/learning_rate", tf.convert_to_tensor(self.learning_rate)))
|
251 |
+
all_ops.append(autosummary.autosummary(self.id + "/overflow_frequency", tf.where(all_ok, 0, 1), condition=acc_ok))
|
252 |
+
if self.use_loss_scaling:
|
253 |
+
all_ops.append(autosummary.autosummary(self.id + "/loss_scaling_log2", device.loss_scaling_var))
|
254 |
+
|
255 |
+
# Initialize variables.
|
256 |
+
self.reset_optimizer_state()
|
257 |
+
if self.use_loss_scaling:
|
258 |
+
tfutil.init_uninitialized_vars([device.loss_scaling_var for device in self._devices.values()])
|
259 |
+
if self.minibatch_multiplier is not None:
|
260 |
+
tfutil.run([var.initializer for device in self._devices.values() for var in list(device.grad_acc_vars.values()) + [device.grad_acc_count]])
|
261 |
+
|
262 |
+
# Group everything into a single op.
|
263 |
+
with tfutil.absolute_name_scope(self.scope):
|
264 |
+
return tf.group(*all_ops, name="TrainingOp")
|
265 |
+
|
266 |
+
def reset_optimizer_state(self) -> None:
|
267 |
+
"""Reset internal state of the underlying optimizer."""
|
268 |
+
tfutil.assert_tf_initialized()
|
269 |
+
tfutil.run([var.initializer for device in self._devices.values() for var in device.optimizer.variables()])
|
270 |
+
|
271 |
+
def get_loss_scaling_var(self, device: str) -> Union[tf.Variable, None]:
|
272 |
+
"""Get or create variable representing log2 of the current dynamic loss scaling factor."""
|
273 |
+
return self._get_device(device).loss_scaling_var
|
274 |
+
|
275 |
+
def apply_loss_scaling(self, value: TfExpression) -> TfExpression:
|
276 |
+
"""Apply dynamic loss scaling for the given expression."""
|
277 |
+
assert tfutil.is_tf_expression(value)
|
278 |
+
if not self.use_loss_scaling:
|
279 |
+
return value
|
280 |
+
return value * tfutil.exp2(self.get_loss_scaling_var(value.device))
|
281 |
+
|
282 |
+
def undo_loss_scaling(self, value: TfExpression) -> TfExpression:
|
283 |
+
"""Undo the effect of dynamic loss scaling for the given expression."""
|
284 |
+
assert tfutil.is_tf_expression(value)
|
285 |
+
if not self.use_loss_scaling:
|
286 |
+
return value
|
287 |
+
return value * tfutil.exp2(-self.get_loss_scaling_var(value.device)) # pylint: disable=invalid-unary-operand-type
|
288 |
+
|
289 |
+
def _broadcast_nccl(self):
|
290 |
+
"""Sum gradients across devices using NCCL ops (fast path)."""
|
291 |
+
from tensorflow.python.ops import nccl_ops # pylint: disable=no-name-in-module
|
292 |
+
for all_vars in zip(*[device.grad_clean.keys() for device in self._devices.values()]):
|
293 |
+
if any(x.shape.num_elements() > 0 for x in all_vars):
|
294 |
+
all_grads = [device.grad_clean[var] for device, var in zip(self._devices.values(), all_vars)]
|
295 |
+
all_grads = nccl_ops.all_sum(all_grads)
|
296 |
+
for device, var, grad in zip(self._devices.values(), all_vars, all_grads):
|
297 |
+
device.grad_clean[var] = grad
|
298 |
+
|
299 |
+
def _broadcast_fallback(self):
|
300 |
+
"""Sum gradients across devices using TensorFlow collective ops (slow fallback path)."""
|
301 |
+
from tensorflow.python.ops import collective_ops # pylint: disable=no-name-in-module
|
302 |
+
global _collective_ops_warning_printed, _collective_ops_group_key, _collective_ops_instance_key
|
303 |
+
if all(x.shape.num_elements() == 0 for device in self._devices.values() for x in device.grad_clean.values()):
|
304 |
+
return
|
305 |
+
if not _collective_ops_warning_printed:
|
306 |
+
print("------------------------------------------------------------------------")
|
307 |
+
print("WARNING: Using slow fallback implementation for inter-GPU communication.")
|
308 |
+
print("Please use TensorFlow 1.14 on Linux for optimal training performance.")
|
309 |
+
print("------------------------------------------------------------------------")
|
310 |
+
_collective_ops_warning_printed = True
|
311 |
+
for device in self._devices.values():
|
312 |
+
with tf.device(device.name):
|
313 |
+
combo = [tf.reshape(x, [x.shape.num_elements()]) for x in device.grad_clean.values()]
|
314 |
+
combo = tf.concat(combo, axis=0)
|
315 |
+
combo = collective_ops.all_reduce(combo, merge_op='Add', final_op='Id',
|
316 |
+
group_size=len(self._devices), group_key=_collective_ops_group_key,
|
317 |
+
instance_key=_collective_ops_instance_key)
|
318 |
+
cur_ofs = 0
|
319 |
+
for var, grad_old in device.grad_clean.items():
|
320 |
+
grad_new = tf.reshape(combo[cur_ofs : cur_ofs + grad_old.shape.num_elements()], grad_old.shape)
|
321 |
+
cur_ofs += grad_old.shape.num_elements()
|
322 |
+
device.grad_clean[var] = grad_new
|
323 |
+
_collective_ops_instance_key += 1
|
324 |
+
|
325 |
+
|
326 |
+
class SimpleAdam:
|
327 |
+
"""Simplified version of tf.train.AdamOptimizer that behaves identically when used with dnnlib.tflib.Optimizer."""
|
328 |
+
|
329 |
+
def __init__(self, name="Adam", learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8):
|
330 |
+
self.name = name
|
331 |
+
self.learning_rate = learning_rate
|
332 |
+
self.beta1 = beta1
|
333 |
+
self.beta2 = beta2
|
334 |
+
self.epsilon = epsilon
|
335 |
+
self.all_state_vars = []
|
336 |
+
|
337 |
+
def variables(self):
|
338 |
+
return self.all_state_vars
|
339 |
+
|
340 |
+
def compute_gradients(self, loss, var_list, gate_gradients=tf.train.Optimizer.GATE_NONE):
|
341 |
+
assert gate_gradients == tf.train.Optimizer.GATE_NONE
|
342 |
+
return list(zip(tf.gradients(loss, var_list), var_list))
|
343 |
+
|
344 |
+
def apply_gradients(self, grads_and_vars):
|
345 |
+
with tf.name_scope(self.name):
|
346 |
+
state_vars = []
|
347 |
+
update_ops = []
|
348 |
+
|
349 |
+
# Adjust learning rate to deal with startup bias.
|
350 |
+
with tf.control_dependencies(None):
|
351 |
+
b1pow_var = tf.Variable(dtype=tf.float32, initial_value=1, trainable=False)
|
352 |
+
b2pow_var = tf.Variable(dtype=tf.float32, initial_value=1, trainable=False)
|
353 |
+
state_vars += [b1pow_var, b2pow_var]
|
354 |
+
b1pow_new = b1pow_var * self.beta1
|
355 |
+
b2pow_new = b2pow_var * self.beta2
|
356 |
+
update_ops += [tf.assign(b1pow_var, b1pow_new), tf.assign(b2pow_var, b2pow_new)]
|
357 |
+
lr_new = self.learning_rate * tf.sqrt(1 - b2pow_new) / (1 - b1pow_new)
|
358 |
+
|
359 |
+
# Construct ops to update each variable.
|
360 |
+
for grad, var in grads_and_vars:
|
361 |
+
with tf.control_dependencies(None):
|
362 |
+
m_var = tf.Variable(dtype=tf.float32, initial_value=tf.zeros_like(var), trainable=False)
|
363 |
+
v_var = tf.Variable(dtype=tf.float32, initial_value=tf.zeros_like(var), trainable=False)
|
364 |
+
state_vars += [m_var, v_var]
|
365 |
+
m_new = self.beta1 * m_var + (1 - self.beta1) * grad
|
366 |
+
v_new = self.beta2 * v_var + (1 - self.beta2) * tf.square(grad)
|
367 |
+
var_delta = lr_new * m_new / (tf.sqrt(v_new) + self.epsilon)
|
368 |
+
update_ops += [tf.assign(m_var, m_new), tf.assign(v_var, v_new), tf.assign_sub(var, var_delta)]
|
369 |
+
|
370 |
+
# Group everything together.
|
371 |
+
self.all_state_vars += state_vars
|
372 |
+
return tf.group(*update_ops)
|
PTI/models/StyleCLIP/global_directions/dnnlib/tflib/tfutil.py
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
+
|
9 |
+
"""Miscellaneous helper utils for Tensorflow."""
|
10 |
+
|
11 |
+
import os
|
12 |
+
import numpy as np
|
13 |
+
import tensorflow as tf
|
14 |
+
|
15 |
+
# Silence deprecation warnings from TensorFlow 1.13 onwards
|
16 |
+
import logging
|
17 |
+
logging.getLogger('tensorflow').setLevel(logging.ERROR)
|
18 |
+
import tensorflow.contrib # requires TensorFlow 1.x!
|
19 |
+
tf.contrib = tensorflow.contrib
|
20 |
+
|
21 |
+
from typing import Any, Iterable, List, Union
|
22 |
+
|
23 |
+
TfExpression = Union[tf.Tensor, tf.Variable, tf.Operation]
|
24 |
+
"""A type that represents a valid Tensorflow expression."""
|
25 |
+
|
26 |
+
TfExpressionEx = Union[TfExpression, int, float, np.ndarray]
|
27 |
+
"""A type that can be converted to a valid Tensorflow expression."""
|
28 |
+
|
29 |
+
|
30 |
+
def run(*args, **kwargs) -> Any:
|
31 |
+
"""Run the specified ops in the default session."""
|
32 |
+
assert_tf_initialized()
|
33 |
+
return tf.get_default_session().run(*args, **kwargs)
|
34 |
+
|
35 |
+
|
36 |
+
def is_tf_expression(x: Any) -> bool:
|
37 |
+
"""Check whether the input is a valid Tensorflow expression, i.e., Tensorflow Tensor, Variable, or Operation."""
|
38 |
+
return isinstance(x, (tf.Tensor, tf.Variable, tf.Operation))
|
39 |
+
|
40 |
+
|
41 |
+
def shape_to_list(shape: Iterable[tf.Dimension]) -> List[Union[int, None]]:
|
42 |
+
"""Convert a Tensorflow shape to a list of ints. Retained for backwards compatibility -- use TensorShape.as_list() in new code."""
|
43 |
+
return [dim.value for dim in shape]
|
44 |
+
|
45 |
+
|
46 |
+
def flatten(x: TfExpressionEx) -> TfExpression:
|
47 |
+
"""Shortcut function for flattening a tensor."""
|
48 |
+
with tf.name_scope("Flatten"):
|
49 |
+
return tf.reshape(x, [-1])
|
50 |
+
|
51 |
+
|
52 |
+
def log2(x: TfExpressionEx) -> TfExpression:
|
53 |
+
"""Logarithm in base 2."""
|
54 |
+
with tf.name_scope("Log2"):
|
55 |
+
return tf.log(x) * np.float32(1.0 / np.log(2.0))
|
56 |
+
|
57 |
+
|
58 |
+
def exp2(x: TfExpressionEx) -> TfExpression:
|
59 |
+
"""Exponent in base 2."""
|
60 |
+
with tf.name_scope("Exp2"):
|
61 |
+
return tf.exp(x * np.float32(np.log(2.0)))
|
62 |
+
|
63 |
+
|
64 |
+
def erfinv(y: TfExpressionEx) -> TfExpression:
|
65 |
+
"""Inverse of the error function."""
|
66 |
+
# pylint: disable=no-name-in-module
|
67 |
+
from tensorflow.python.ops.distributions import special_math
|
68 |
+
return special_math.erfinv(y)
|
69 |
+
|
70 |
+
|
71 |
+
def lerp(a: TfExpressionEx, b: TfExpressionEx, t: TfExpressionEx) -> TfExpressionEx:
|
72 |
+
"""Linear interpolation."""
|
73 |
+
with tf.name_scope("Lerp"):
|
74 |
+
return a + (b - a) * t
|
75 |
+
|
76 |
+
|
77 |
+
def lerp_clip(a: TfExpressionEx, b: TfExpressionEx, t: TfExpressionEx) -> TfExpression:
|
78 |
+
"""Linear interpolation with clip."""
|
79 |
+
with tf.name_scope("LerpClip"):
|
80 |
+
return a + (b - a) * tf.clip_by_value(t, 0.0, 1.0)
|
81 |
+
|
82 |
+
|
83 |
+
def absolute_name_scope(scope: str) -> tf.name_scope:
|
84 |
+
"""Forcefully enter the specified name scope, ignoring any surrounding scopes."""
|
85 |
+
return tf.name_scope(scope + "/")
|
86 |
+
|
87 |
+
|
88 |
+
def absolute_variable_scope(scope: str, **kwargs) -> tf.variable_scope:
|
89 |
+
"""Forcefully enter the specified variable scope, ignoring any surrounding scopes."""
|
90 |
+
return tf.variable_scope(tf.VariableScope(name=scope, **kwargs), auxiliary_name_scope=False)
|
91 |
+
|
92 |
+
|
93 |
+
def _sanitize_tf_config(config_dict: dict = None) -> dict:
|
94 |
+
# Defaults.
|
95 |
+
cfg = dict()
|
96 |
+
cfg["rnd.np_random_seed"] = None # Random seed for NumPy. None = keep as is.
|
97 |
+
cfg["rnd.tf_random_seed"] = "auto" # Random seed for TensorFlow. 'auto' = derive from NumPy random state. None = keep as is.
|
98 |
+
cfg["env.TF_CPP_MIN_LOG_LEVEL"] = "1" # 0 = Print all available debug info from TensorFlow. 1 = Print warnings and errors, but disable debug info.
|
99 |
+
cfg["env.HDF5_USE_FILE_LOCKING"] = "FALSE" # Disable HDF5 file locking to avoid concurrency issues with network shares.
|
100 |
+
cfg["graph_options.place_pruned_graph"] = True # False = Check that all ops are available on the designated device. True = Skip the check for ops that are not used.
|
101 |
+
cfg["gpu_options.allow_growth"] = True # False = Allocate all GPU memory at the beginning. True = Allocate only as much GPU memory as needed.
|
102 |
+
|
103 |
+
# Remove defaults for environment variables that are already set.
|
104 |
+
for key in list(cfg):
|
105 |
+
fields = key.split(".")
|
106 |
+
if fields[0] == "env":
|
107 |
+
assert len(fields) == 2
|
108 |
+
if fields[1] in os.environ:
|
109 |
+
del cfg[key]
|
110 |
+
|
111 |
+
# User overrides.
|
112 |
+
if config_dict is not None:
|
113 |
+
cfg.update(config_dict)
|
114 |
+
return cfg
|
115 |
+
|
116 |
+
|
117 |
+
def init_tf(config_dict: dict = None) -> None:
|
118 |
+
"""Initialize TensorFlow session using good default settings."""
|
119 |
+
# Skip if already initialized.
|
120 |
+
if tf.get_default_session() is not None:
|
121 |
+
return
|
122 |
+
|
123 |
+
# Setup config dict and random seeds.
|
124 |
+
cfg = _sanitize_tf_config(config_dict)
|
125 |
+
np_random_seed = cfg["rnd.np_random_seed"]
|
126 |
+
if np_random_seed is not None:
|
127 |
+
np.random.seed(np_random_seed)
|
128 |
+
tf_random_seed = cfg["rnd.tf_random_seed"]
|
129 |
+
if tf_random_seed == "auto":
|
130 |
+
tf_random_seed = np.random.randint(1 << 31)
|
131 |
+
if tf_random_seed is not None:
|
132 |
+
tf.set_random_seed(tf_random_seed)
|
133 |
+
|
134 |
+
# Setup environment variables.
|
135 |
+
for key, value in cfg.items():
|
136 |
+
fields = key.split(".")
|
137 |
+
if fields[0] == "env":
|
138 |
+
assert len(fields) == 2
|
139 |
+
os.environ[fields[1]] = str(value)
|
140 |
+
|
141 |
+
# Create default TensorFlow session.
|
142 |
+
create_session(cfg, force_as_default=True)
|
143 |
+
|
144 |
+
|
145 |
+
def assert_tf_initialized():
|
146 |
+
"""Check that TensorFlow session has been initialized."""
|
147 |
+
if tf.get_default_session() is None:
|
148 |
+
raise RuntimeError("No default TensorFlow session found. Please call dnnlib.tflib.init_tf().")
|
149 |
+
|
150 |
+
|
151 |
+
def create_session(config_dict: dict = None, force_as_default: bool = False) -> tf.Session:
|
152 |
+
"""Create tf.Session based on config dict."""
|
153 |
+
# Setup TensorFlow config proto.
|
154 |
+
cfg = _sanitize_tf_config(config_dict)
|
155 |
+
config_proto = tf.ConfigProto()
|
156 |
+
for key, value in cfg.items():
|
157 |
+
fields = key.split(".")
|
158 |
+
if fields[0] not in ["rnd", "env"]:
|
159 |
+
obj = config_proto
|
160 |
+
for field in fields[:-1]:
|
161 |
+
obj = getattr(obj, field)
|
162 |
+
setattr(obj, fields[-1], value)
|
163 |
+
|
164 |
+
# Create session.
|
165 |
+
session = tf.Session(config=config_proto)
|
166 |
+
if force_as_default:
|
167 |
+
# pylint: disable=protected-access
|
168 |
+
session._default_session = session.as_default()
|
169 |
+
session._default_session.enforce_nesting = False
|
170 |
+
session._default_session.__enter__()
|
171 |
+
return session
|
172 |
+
|
173 |
+
|
174 |
+
def init_uninitialized_vars(target_vars: List[tf.Variable] = None) -> None:
|
175 |
+
"""Initialize all tf.Variables that have not already been initialized.
|
176 |
+
|
177 |
+
Equivalent to the following, but more efficient and does not bloat the tf graph:
|
178 |
+
tf.variables_initializer(tf.report_uninitialized_variables()).run()
|
179 |
+
"""
|
180 |
+
assert_tf_initialized()
|
181 |
+
if target_vars is None:
|
182 |
+
target_vars = tf.global_variables()
|
183 |
+
|
184 |
+
test_vars = []
|
185 |
+
test_ops = []
|
186 |
+
|
187 |
+
with tf.control_dependencies(None): # ignore surrounding control_dependencies
|
188 |
+
for var in target_vars:
|
189 |
+
assert is_tf_expression(var)
|
190 |
+
|
191 |
+
try:
|
192 |
+
tf.get_default_graph().get_tensor_by_name(var.name.replace(":0", "/IsVariableInitialized:0"))
|
193 |
+
except KeyError:
|
194 |
+
# Op does not exist => variable may be uninitialized.
|
195 |
+
test_vars.append(var)
|
196 |
+
|
197 |
+
with absolute_name_scope(var.name.split(":")[0]):
|
198 |
+
test_ops.append(tf.is_variable_initialized(var))
|
199 |
+
|
200 |
+
init_vars = [var for var, inited in zip(test_vars, run(test_ops)) if not inited]
|
201 |
+
run([var.initializer for var in init_vars])
|
202 |
+
|
203 |
+
|
204 |
+
def set_vars(var_to_value_dict: dict) -> None:
|
205 |
+
"""Set the values of given tf.Variables.
|
206 |
+
|
207 |
+
Equivalent to the following, but more efficient and does not bloat the tf graph:
|
208 |
+
tflib.run([tf.assign(var, value) for var, value in var_to_value_dict.items()]
|
209 |
+
"""
|
210 |
+
assert_tf_initialized()
|
211 |
+
ops = []
|
212 |
+
feed_dict = {}
|
213 |
+
|
214 |
+
for var, value in var_to_value_dict.items():
|
215 |
+
assert is_tf_expression(var)
|
216 |
+
|
217 |
+
try:
|
218 |
+
setter = tf.get_default_graph().get_tensor_by_name(var.name.replace(":0", "/setter:0")) # look for existing op
|
219 |
+
except KeyError:
|
220 |
+
with absolute_name_scope(var.name.split(":")[0]):
|
221 |
+
with tf.control_dependencies(None): # ignore surrounding control_dependencies
|
222 |
+
setter = tf.assign(var, tf.placeholder(var.dtype, var.shape, "new_value"), name="setter") # create new setter
|
223 |
+
|
224 |
+
ops.append(setter)
|
225 |
+
feed_dict[setter.op.inputs[1]] = value
|
226 |
+
|
227 |
+
run(ops, feed_dict)
|
228 |
+
|
229 |
+
|
230 |
+
def create_var_with_large_initial_value(initial_value: np.ndarray, *args, **kwargs):
|
231 |
+
"""Create tf.Variable with large initial value without bloating the tf graph."""
|
232 |
+
assert_tf_initialized()
|
233 |
+
assert isinstance(initial_value, np.ndarray)
|
234 |
+
zeros = tf.zeros(initial_value.shape, initial_value.dtype)
|
235 |
+
var = tf.Variable(zeros, *args, **kwargs)
|
236 |
+
set_vars({var: initial_value})
|
237 |
+
return var
|
238 |
+
|
239 |
+
|
240 |
+
def convert_images_from_uint8(images, drange=[-1,1], nhwc_to_nchw=False):
|
241 |
+
"""Convert a minibatch of images from uint8 to float32 with configurable dynamic range.
|
242 |
+
Can be used as an input transformation for Network.run().
|
243 |
+
"""
|
244 |
+
images = tf.cast(images, tf.float32)
|
245 |
+
if nhwc_to_nchw:
|
246 |
+
images = tf.transpose(images, [0, 3, 1, 2])
|
247 |
+
return images * ((drange[1] - drange[0]) / 255) + drange[0]
|
248 |
+
|
249 |
+
|
250 |
+
def convert_images_to_uint8(images, drange=[-1,1], nchw_to_nhwc=False, shrink=1):
|
251 |
+
"""Convert a minibatch of images from float32 to uint8 with configurable dynamic range.
|
252 |
+
Can be used as an output transformation for Network.run().
|
253 |
+
"""
|
254 |
+
images = tf.cast(images, tf.float32)
|
255 |
+
if shrink > 1:
|
256 |
+
ksize = [1, 1, shrink, shrink]
|
257 |
+
images = tf.nn.avg_pool(images, ksize=ksize, strides=ksize, padding="VALID", data_format="NCHW")
|
258 |
+
if nchw_to_nhwc:
|
259 |
+
images = tf.transpose(images, [0, 2, 3, 1])
|
260 |
+
scale = 255 / (drange[1] - drange[0])
|
261 |
+
images = images * scale + (0.5 - drange[0] * scale)
|
262 |
+
return tf.saturate_cast(images, tf.uint8)
|