# Taken from the https://github.com/chenxi116/DeepLabv3.pytorch repository. import torch import torch.nn as nn import math import torch.utils.model_zoo as model_zoo from torch.nn import functional as F import os __all__ = ["ResNet", "resnet50", "resnet101", "resnet152"] model_urls = { "resnet50": "https://download.pytorch.org/models/resnet50-19c8e357.pth", "resnet101": "https://download.pytorch.org/models/resnet101-5d3b4d8f.pth", "resnet152": "https://download.pytorch.org/models/resnet152-b121ed2d.pth", } class Conv2d(nn.Conv2d): def __init__( self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, ): super(Conv2d, self).__init__( in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias, ) def forward(self, x): # return super(Conv2d, self).forward(x) weight = self.weight weight_mean = ( weight.mean(dim=1, keepdim=True) .mean(dim=2, keepdim=True) .mean(dim=3, keepdim=True) ) weight = weight - weight_mean std = weight.view(weight.size(0), -1).std(dim=1).view(-1, 1, 1, 1) + 1e-5 weight = weight / std.expand_as(weight) return F.conv2d( x, weight, self.bias, self.stride, self.padding, self.dilation, self.groups ) class ASPP(nn.Module): def __init__( self, C, depth, num_classes, conv=nn.Conv2d, norm=nn.BatchNorm2d, momentum=0.0003, mult=1, ): super(ASPP, self).__init__() self._C = C self._depth = depth self._num_classes = num_classes self.global_pooling = nn.AdaptiveAvgPool2d(1) self.relu = nn.ReLU(inplace=True) self.aspp1 = conv(C, depth, kernel_size=1, stride=1, bias=False) self.aspp2 = conv( C, depth, kernel_size=3, stride=1, dilation=int(6 * mult), padding=int(6 * mult), bias=False, ) self.aspp3 = conv( C, depth, kernel_size=3, stride=1, dilation=int(12 * mult), padding=int(12 * mult), bias=False, ) self.aspp4 = conv( C, depth, kernel_size=3, stride=1, dilation=int(18 * mult), padding=int(18 * mult), bias=False, ) self.aspp5 = conv(C, depth, kernel_size=1, stride=1, bias=False) self.aspp1_bn = norm(depth, momentum) self.aspp2_bn = norm(depth, momentum) self.aspp3_bn = norm(depth, momentum) self.aspp4_bn = norm(depth, momentum) self.aspp5_bn = norm(depth, momentum) self.conv2 = conv(depth * 5, depth, kernel_size=1, stride=1, bias=False) self.bn2 = norm(depth, momentum) self.conv3 = nn.Conv2d(depth, num_classes, kernel_size=1, stride=1) def forward(self, x): x1 = self.aspp1(x) x1 = self.aspp1_bn(x1) x1 = self.relu(x1) x2 = self.aspp2(x) x2 = self.aspp2_bn(x2) x2 = self.relu(x2) x3 = self.aspp3(x) x3 = self.aspp3_bn(x3) x3 = self.relu(x3) x4 = self.aspp4(x) x4 = self.aspp4_bn(x4) x4 = self.relu(x4) x5 = self.global_pooling(x) x5 = self.aspp5(x5) x5 = self.aspp5_bn(x5) x5 = self.relu(x5) x5 = nn.Upsample((x.shape[2], x.shape[3]), mode="bilinear", align_corners=True)( x5 ) x = torch.cat((x1, x2, x3, x4, x5), 1) x = self.conv2(x) x = self.bn2(x) x = self.relu(x) x = self.conv3(x) return x class Bottleneck(nn.Module): expansion = 4 def __init__( self, inplanes, planes, stride=1, downsample=None, dilation=1, conv=None, norm=None, ): super(Bottleneck, self).__init__() self.conv1 = conv(inplanes, planes, kernel_size=1, bias=False) self.bn1 = norm(planes) self.conv2 = conv( planes, planes, kernel_size=3, stride=stride, dilation=dilation, padding=dilation, bias=False, ) self.bn2 = norm(planes) self.conv3 = conv(planes, planes * self.expansion, kernel_size=1, bias=False) self.bn3 = norm(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__( self, block, layers, num_classes, num_groups=None, weight_std=False, beta=False ): self.inplanes = 64 self.norm = ( lambda planes, momentum=0.05: nn.BatchNorm2d(planes, momentum=momentum) if num_groups is None else nn.GroupNorm(num_groups, planes) ) self.conv = Conv2d if weight_std else nn.Conv2d super(ResNet, self).__init__() if not beta: self.conv1 = self.conv( 3, 64, kernel_size=7, stride=2, padding=3, bias=False ) else: self.conv1 = nn.Sequential( self.conv(3, 64, 3, stride=2, padding=1, bias=False), self.conv(64, 64, 3, stride=1, padding=1, bias=False), self.conv(64, 64, 3, stride=1, padding=1, bias=False), ) self.bn1 = self.norm(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=2) self.aspp = ASPP( 512 * block.expansion, 256, num_classes, conv=self.conv, norm=self.norm ) for m in self.modules(): if isinstance(m, self.conv): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2.0 / n)) elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.GroupNorm): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, stride=1, dilation=1): downsample = None if stride != 1 or dilation != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( self.conv( self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, dilation=max(1, dilation / 2), bias=False, ), self.norm(planes * block.expansion), ) layers = [] layers.append( block( self.inplanes, planes, stride, downsample, dilation=max(1, dilation / 2), conv=self.conv, norm=self.norm, ) ) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append( block( self.inplanes, planes, dilation=dilation, conv=self.conv, norm=self.norm, ) ) return nn.Sequential(*layers) def forward(self, x): size = (x.shape[2], x.shape[3]) x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.aspp(x) x = nn.Upsample(size, mode="bilinear", align_corners=True)(x) return x def resnet50(pretrained=False, **kwargs): """Constructs a ResNet-50 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls["resnet50"])) return model def resnet101(path=None, pretrained=False, num_groups=None, weight_std=False, **kwargs): """Constructs a ResNet-101 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet( Bottleneck, [3, 4, 23, 3], num_groups=num_groups, weight_std=weight_std, **kwargs ) if pretrained: model_dict = model.state_dict() if num_groups and weight_std: path = os.path.join(os.path.dirname(path), "R-101-GN-WS.pth.tar") pretrained_dict = torch.load(path) overlap_dict = { k[7:]: v for k, v in pretrained_dict.items() if k[7:] in model_dict } assert len(overlap_dict) == 312 elif not num_groups and not weight_std: pretrained_dict = model_zoo.load_url(model_urls["resnet101"]) overlap_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict} else: raise ValueError("Currently only support BN or GN+WS") model_dict.update(overlap_dict) model.load_state_dict(model_dict) return model def resnet152(pretrained=False, **kwargs): """Constructs a ResNet-152 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls["resnet152"])) return model