import gradio as gr import utils from PIL import Image import torch import math from torchvision import transforms device = "cpu" years = [str(y) for y in range(1880, 2020, 10)] orig_models = {} for year in years: G, w_avg = utils.load_stylegan2(f"pretrained_models/{year}.pkl", device) orig_models[year] = { "G": G.eval()} transform = transforms.Compose([ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]) # Download human-readable labels for ImageNet. def predict(inp): #with torch.no_grad(): return inp gr.Interface(fn=predict, inputs=gr.Image(type="pil"), outputs=gr.Image(type="pil"), #examples=["lion.jpg", "cheetah.jpg"] ).launch()