import os import pickle from argparse import Namespace import torchvision import torch import sys import time from configs import paths_config, global_config from models.StyleCLIP.mapper.styleclip_mapper import StyleCLIPMapper from utils.models_utils import load_tuned_G, load_old_G sys.path.append(".") sys.path.append("..") def run(test_opts, model_id, image_name, use_multi_id_G): out_path_results = os.path.join(test_opts.exp_dir, test_opts.data_dir_name) os.makedirs(out_path_results, exist_ok=True) out_path_results = os.path.join(out_path_results, test_opts.image_name) os.makedirs(out_path_results, exist_ok=True) # update test configs with configs used during training ckpt = torch.load(test_opts.checkpoint_path, map_location='cpu') opts = ckpt['opts'] opts.update(vars(test_opts)) opts = Namespace(**opts) net = StyleCLIPMapper(opts, test_opts.run_id) net.eval() net.to(global_config.device) generator_type = paths_config.multi_id_model_type if use_multi_id_G else image_name new_G = load_tuned_G(model_id, generator_type) old_G = load_old_G() run_styleclip(net, new_G, opts, paths_config.pti_results_keyword, out_path_results, test_opts) run_styleclip(net, old_G, opts, paths_config.e4e_results_keyword, out_path_results, test_opts) def run_styleclip(net, G, opts, method, out_path_results, test_opts): net.set_G(G) out_path_results = os.path.join(out_path_results, method) os.makedirs(out_path_results, exist_ok=True) latent = torch.load(opts.latents_test_path) global_i = 0 global_time = [] with torch.no_grad(): input_cuda = latent.cuda().float() tic = time.time() result_batch = run_on_batch(input_cuda, net, test_opts.couple_outputs) toc = time.time() global_time.append(toc - tic) for i in range(opts.test_batch_size): im_path = f'{test_opts.image_name}_{test_opts.edit_name}' if test_opts.couple_outputs: couple_output = torch.cat([result_batch[2][i].unsqueeze(0), result_batch[0][i].unsqueeze(0)]) torchvision.utils.save_image(couple_output, os.path.join(out_path_results, f"{im_path}.jpg"), normalize=True, range=(-1, 1)) else: torchvision.utils.save_image(result_batch[0][i], os.path.join(out_path_results, f"{im_path}.jpg"), normalize=True, range=(-1, 1)) torch.save(result_batch[1][i].detach().cpu(), os.path.join(out_path_results, f"latent_{im_path}.pt")) def run_on_batch(inputs, net, couple_outputs=False): w = inputs with torch.no_grad(): w_hat = w + 0.06 * net.mapper(w) x_hat = net.decoder.synthesis(w_hat, noise_mode='const', force_fp32=True) result_batch = (x_hat, w_hat) if couple_outputs: x = net.decoder.synthesis(w, noise_mode='const', force_fp32=True) result_batch = (x_hat, w_hat, x) return result_batch