from random import choice from string import ascii_uppercase from torch.utils.data import DataLoader from torchvision.transforms import transforms import os import sys from configs import global_config, paths_config import wandb from training.coaches.multi_id_coach import MultiIDCoach from training.coaches.single_id_coach import SingleIDCoach from utils.ImagesDataset import ImagesDataset def run_PTI(run_name="", use_wandb=False, use_multi_id_training=False): os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = global_config.cuda_visible_devices if run_name == "": global_config.run_name = "".join(choice(ascii_uppercase) for i in range(12)) else: global_config.run_name = run_name if use_wandb: run = wandb.init( project=paths_config.pti_results_keyword, reinit=True, name=global_config.run_name, ) global_config.pivotal_training_steps = 1 global_config.training_step = 1 embedding_dir_path = f"{paths_config.embedding_base_dir}/{paths_config.input_data_id}/{paths_config.pti_results_keyword}" os.makedirs(embedding_dir_path, exist_ok=True) dataset = ImagesDataset( paths_config.input_data_path, transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), ] ), ) dataloader = DataLoader(dataset, batch_size=1, shuffle=False) if use_multi_id_training: coach = MultiIDCoach(dataloader, use_wandb) else: coach = SingleIDCoach(dataloader, use_wandb) coach.train() return global_config.run_name if __name__ == "__main__": run_name = f"pti_{paths_config.year}" print(run_name) run_PTI(run_name=run_name, use_wandb=False, use_multi_id_training=False)