Update space
Browse files
app.py
CHANGED
@@ -4,32 +4,20 @@ import requests
|
|
4 |
from bs4 import BeautifulSoup
|
5 |
import pandas as pd
|
6 |
|
7 |
-
"""
|
8 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
9 |
-
"""
|
10 |
client = InferenceClient("meta-llama/Llama-3.2-3B-Instruct")
|
11 |
|
|
|
|
|
12 |
|
13 |
-
def respond(
|
14 |
-
message,
|
15 |
-
history: list[tuple[str, str]],
|
16 |
-
system_message,
|
17 |
-
max_tokens,
|
18 |
-
temperature,
|
19 |
-
top_p,
|
20 |
-
):
|
21 |
messages = [{"role": "system", "content": system_message}]
|
22 |
-
|
23 |
for val in history:
|
24 |
if val[0]:
|
25 |
messages.append({"role": "user", "content": val[0]})
|
26 |
if val[1]:
|
27 |
messages.append({"role": "assistant", "content": val[1]})
|
28 |
-
|
29 |
messages.append({"role": "user", "content": message})
|
30 |
-
|
31 |
response = ""
|
32 |
-
|
33 |
for message in client.chat_completion(
|
34 |
messages,
|
35 |
max_tokens=max_tokens,
|
@@ -38,7 +26,6 @@ def respond(
|
|
38 |
top_p=top_p,
|
39 |
):
|
40 |
token = message.choices[0].delta.content
|
41 |
-
|
42 |
response += token
|
43 |
yield response
|
44 |
|
@@ -48,31 +35,26 @@ def extract_table(url):
|
|
48 |
try:
|
49 |
response = requests.get(url)
|
50 |
response.raise_for_status()
|
51 |
-
soup = BeautifulSoup(response.text,
|
52 |
-
table = soup.find(
|
53 |
if not table:
|
54 |
return "<p>No table found on page</p>"
|
55 |
-
|
56 |
# Extract data
|
57 |
data = []
|
58 |
-
rows = table.find_all(
|
59 |
-
for i, row in enumerate(rows[1:]):
|
60 |
-
cells = row.find_all(
|
61 |
if len(cells) >= 2:
|
62 |
-
data.append({
|
63 |
-
|
64 |
-
|
65 |
-
'Topic': cells[1].text.strip(),
|
66 |
-
})
|
67 |
-
|
68 |
-
# Generate HTML table with buttons
|
69 |
html_rows = ""
|
70 |
for row in data:
|
71 |
html_rows += f"""
|
72 |
<tr>
|
73 |
<td>{row['Date']}</td>
|
74 |
<td>{row['Topic']}</td>
|
75 |
-
<td><button onclick="handlePrepare({row['Index']})">Prepare</button></td>
|
76 |
</tr>
|
77 |
"""
|
78 |
html_table = f"""
|
@@ -80,7 +62,6 @@ def extract_table(url):
|
|
80 |
<tr>
|
81 |
<th>Date</th>
|
82 |
<th>Topic</th>
|
83 |
-
<th>Action</th>
|
84 |
</tr>
|
85 |
{html_rows}
|
86 |
</table>
|
@@ -90,33 +71,24 @@ def extract_table(url):
|
|
90 |
return f"<p>Error: {str(e)}</p>"
|
91 |
|
92 |
|
93 |
-
|
94 |
-
def display_table(url):
|
95 |
-
return extract_table(url)
|
96 |
-
|
97 |
def handle_prepare(index):
|
98 |
topic = data[index]["Topic"]
|
99 |
return f"Prepare a 10-minute reading on what I should know before the class for the topic: {topic}"
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
"""
|
104 |
with gr.Blocks() as demo:
|
105 |
with gr.Row():
|
106 |
with gr.Column(scale=1):
|
107 |
url_input = gr.Textbox(
|
108 |
value="https://id2223kth.github.io/schedule/",
|
109 |
-
label="Table URL"
|
110 |
)
|
111 |
table_output = gr.HTML(label="Extracted Table")
|
112 |
extract_btn = gr.Button("Extract Table")
|
113 |
-
|
114 |
-
extract_btn.click(
|
115 |
-
|
116 |
-
inputs=[url_input],
|
117 |
-
outputs=[table_output]
|
118 |
-
)
|
119 |
-
|
120 |
with gr.Column(scale=2):
|
121 |
chatbot = gr.ChatInterface(
|
122 |
respond,
|
@@ -124,33 +96,24 @@ with gr.Blocks() as demo:
|
|
124 |
gr.Textbox(value="Student class preparation companion.", label="System message"),
|
125 |
],
|
126 |
)
|
127 |
-
|
128 |
-
# Dynamically generate buttons for "Prepare" actions
|
129 |
-
prepare_buttons = gr.Column(visible=False)
|
130 |
|
131 |
-
|
132 |
-
|
|
|
|
|
133 |
components = []
|
134 |
for i, row in enumerate(data):
|
135 |
btn = gr.Button(f"Prepare: {row['Topic']}")
|
136 |
btn.click(
|
137 |
fn=handle_prepare,
|
138 |
-
inputs=[gr.State(i)],
|
139 |
-
outputs=[],
|
140 |
-
).then(
|
141 |
-
fn=lambda message: ([message],), # Feed to chatbot
|
142 |
-
inputs=[],
|
143 |
outputs=[chatbot],
|
144 |
)
|
145 |
components.append(btn)
|
146 |
return components
|
147 |
|
148 |
-
|
149 |
-
|
150 |
-
inputs=[],
|
151 |
-
outputs=[prepare_buttons],
|
152 |
-
)
|
153 |
-
|
154 |
|
155 |
if __name__ == "__main__":
|
156 |
-
demo.launch()
|
|
|
4 |
from bs4 import BeautifulSoup
|
5 |
import pandas as pd
|
6 |
|
|
|
|
|
|
|
7 |
client = InferenceClient("meta-llama/Llama-3.2-3B-Instruct")
|
8 |
|
9 |
+
# Global data store for the table
|
10 |
+
data = []
|
11 |
|
12 |
+
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
messages = [{"role": "system", "content": system_message}]
|
|
|
14 |
for val in history:
|
15 |
if val[0]:
|
16 |
messages.append({"role": "user", "content": val[0]})
|
17 |
if val[1]:
|
18 |
messages.append({"role": "assistant", "content": val[1]})
|
|
|
19 |
messages.append({"role": "user", "content": message})
|
|
|
20 |
response = ""
|
|
|
21 |
for message in client.chat_completion(
|
22 |
messages,
|
23 |
max_tokens=max_tokens,
|
|
|
26 |
top_p=top_p,
|
27 |
):
|
28 |
token = message.choices[0].delta.content
|
|
|
29 |
response += token
|
30 |
yield response
|
31 |
|
|
|
35 |
try:
|
36 |
response = requests.get(url)
|
37 |
response.raise_for_status()
|
38 |
+
soup = BeautifulSoup(response.text, "html.parser")
|
39 |
+
table = soup.find("table")
|
40 |
if not table:
|
41 |
return "<p>No table found on page</p>"
|
42 |
+
|
43 |
# Extract data
|
44 |
data = []
|
45 |
+
rows = table.find_all("tr")
|
46 |
+
for i, row in enumerate(rows[1:]): # Skip header
|
47 |
+
cells = row.find_all("td")
|
48 |
if len(cells) >= 2:
|
49 |
+
data.append({"Index": i, "Date": cells[0].text.strip()[:10], "Topic": cells[1].text.strip()})
|
50 |
+
|
51 |
+
# Generate HTML table without buttons
|
|
|
|
|
|
|
|
|
52 |
html_rows = ""
|
53 |
for row in data:
|
54 |
html_rows += f"""
|
55 |
<tr>
|
56 |
<td>{row['Date']}</td>
|
57 |
<td>{row['Topic']}</td>
|
|
|
58 |
</tr>
|
59 |
"""
|
60 |
html_table = f"""
|
|
|
62 |
<tr>
|
63 |
<th>Date</th>
|
64 |
<th>Topic</th>
|
|
|
65 |
</tr>
|
66 |
{html_rows}
|
67 |
</table>
|
|
|
71 |
return f"<p>Error: {str(e)}</p>"
|
72 |
|
73 |
|
|
|
|
|
|
|
|
|
74 |
def handle_prepare(index):
|
75 |
topic = data[index]["Topic"]
|
76 |
return f"Prepare a 10-minute reading on what I should know before the class for the topic: {topic}"
|
77 |
|
78 |
+
|
79 |
+
# Gradio App
|
|
|
80 |
with gr.Blocks() as demo:
|
81 |
with gr.Row():
|
82 |
with gr.Column(scale=1):
|
83 |
url_input = gr.Textbox(
|
84 |
value="https://id2223kth.github.io/schedule/",
|
85 |
+
label="Table URL",
|
86 |
)
|
87 |
table_output = gr.HTML(label="Extracted Table")
|
88 |
extract_btn = gr.Button("Extract Table")
|
89 |
+
|
90 |
+
extract_btn.click(fn=extract_table, inputs=[url_input], outputs=[table_output])
|
91 |
+
|
|
|
|
|
|
|
|
|
92 |
with gr.Column(scale=2):
|
93 |
chatbot = gr.ChatInterface(
|
94 |
respond,
|
|
|
96 |
gr.Textbox(value="Student class preparation companion.", label="System message"),
|
97 |
],
|
98 |
)
|
|
|
|
|
|
|
99 |
|
100 |
+
# Container for dynamically generated buttons
|
101 |
+
buttons_container = gr.Column(visible=True)
|
102 |
+
|
103 |
+
def create_buttons():
|
104 |
components = []
|
105 |
for i, row in enumerate(data):
|
106 |
btn = gr.Button(f"Prepare: {row['Topic']}")
|
107 |
btn.click(
|
108 |
fn=handle_prepare,
|
109 |
+
inputs=[gr.State(i)],
|
|
|
|
|
|
|
|
|
110 |
outputs=[chatbot],
|
111 |
)
|
112 |
components.append(btn)
|
113 |
return components
|
114 |
|
115 |
+
# Create buttons when table is extracted
|
116 |
+
extract_btn.click(fn=create_buttons, inputs=[], outputs=[buttons_container])
|
|
|
|
|
|
|
|
|
117 |
|
118 |
if __name__ == "__main__":
|
119 |
+
demo.launch()
|