File size: 2,003 Bytes
4a8795e
 
b8e825d
 
4a8795e
 
6b5d307
0dbf7df
 
597c751
 
61d1760
c5b9e50
 
 
 
 
 
 
597c751
320f7da
cc6872c
6bdaa8c
65c89e8
6b5d307
 
8addde4
c76f78d
6bdaa8c
c6d3f67
0aa9785
0dbf7df
 
 
597c751
4a8795e
 
 
 
 
 
6b5d307
4a8795e
6863937
 
cc6872c
 
4a8795e
8addde4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import gradio
import cv2
import numpy as np



def inference(img,v1='121',v2='3'):
  #out = cv2.erode(img,(15,15))
  #out = cv2.dilate(out,(55,55))
  # https://scikit-image.org/docs/dev/api/skimage.morphology.html#skimage.morphology.remove_small_objects  
  # my_result = cv2.remove_small_objects(binarized.astype(bool), min_size=2, connectivity=2).astype(int)

  #img_bw = 255*(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) > 5).astype('uint8')
  #se1 = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5))
  #se2 = cv2.getStructuringElement(cv2.MORPH_RECT, (2,2))
  #mask = cv2.morphologyEx(img_bw, cv2.MORPH_CLOSE, se1)
  #mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, se2)
  #mask = np.dstack([mask, mask, mask]) / 255
  #out = img * mask

  gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY ) # grayscale
  #out = cv2.adaptiveThreshold(gray,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY,133,9)
  #out = cv2.adaptiveThreshold(gray,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY,333,3)
  out = cv2.GaussianBlur( gray ,(5,5),0)
  #  v1 121 , v2 1
  out = cv2.adaptiveThreshold( out ,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY,v1,v2)
  #out = cv2.dilate(out,(5,5))
  #out = blur = cv.GaussianBlur(img,(5,5),0)
  #out =  cv2.threshold(out,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)

    
  #kernel = cv2.getStructuringElement(cv2.MORPH_RECT, kernelSize)
  #opening = cv2.morphologyEx(gray, cv2.MORPH_OPEN, kernel)

  return out

# For information on Interfaces, head to https://gradio.app/docs/
# For user guides, head to https://gradio.app/guides/
# For Spaces usage, head to https://huggingface.co/docs/hub/spaces
iface = gradio.Interface(
  fn=inference,
  inputs=['image','v1','v2'],
  outputs='image',
  title='Noise Removal', 
  description='Remove Noise with OpenCV and Adaptial Gaussian!',
  examples=["detail_with_lines_and_noise.jpg", "lama.webp", "dT4KW.png"])  
  #examples=["detail_with_lines_and_noise.jpg", "lama.webp", "test_lines.jpg","llama.jpg", "dT4KW.png"])  

iface.launch()