Spaces:
Sleeping
Sleeping
File size: 2,003 Bytes
4a8795e b8e825d 4a8795e 6b5d307 0dbf7df 597c751 61d1760 c5b9e50 597c751 320f7da cc6872c 6bdaa8c 65c89e8 6b5d307 8addde4 c76f78d 6bdaa8c c6d3f67 0aa9785 0dbf7df 597c751 4a8795e 6b5d307 4a8795e 6863937 cc6872c 4a8795e 8addde4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import gradio
import cv2
import numpy as np
def inference(img,v1='121',v2='3'):
#out = cv2.erode(img,(15,15))
#out = cv2.dilate(out,(55,55))
# https://scikit-image.org/docs/dev/api/skimage.morphology.html#skimage.morphology.remove_small_objects
# my_result = cv2.remove_small_objects(binarized.astype(bool), min_size=2, connectivity=2).astype(int)
#img_bw = 255*(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) > 5).astype('uint8')
#se1 = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5))
#se2 = cv2.getStructuringElement(cv2.MORPH_RECT, (2,2))
#mask = cv2.morphologyEx(img_bw, cv2.MORPH_CLOSE, se1)
#mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, se2)
#mask = np.dstack([mask, mask, mask]) / 255
#out = img * mask
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY ) # grayscale
#out = cv2.adaptiveThreshold(gray,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY,133,9)
#out = cv2.adaptiveThreshold(gray,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY,333,3)
out = cv2.GaussianBlur( gray ,(5,5),0)
# v1 121 , v2 1
out = cv2.adaptiveThreshold( out ,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY,v1,v2)
#out = cv2.dilate(out,(5,5))
#out = blur = cv.GaussianBlur(img,(5,5),0)
#out = cv2.threshold(out,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
#kernel = cv2.getStructuringElement(cv2.MORPH_RECT, kernelSize)
#opening = cv2.morphologyEx(gray, cv2.MORPH_OPEN, kernel)
return out
# For information on Interfaces, head to https://gradio.app/docs/
# For user guides, head to https://gradio.app/guides/
# For Spaces usage, head to https://huggingface.co/docs/hub/spaces
iface = gradio.Interface(
fn=inference,
inputs=['image','v1','v2'],
outputs='image',
title='Noise Removal',
description='Remove Noise with OpenCV and Adaptial Gaussian!',
examples=["detail_with_lines_and_noise.jpg", "lama.webp", "dT4KW.png"])
#examples=["detail_with_lines_and_noise.jpg", "lama.webp", "test_lines.jpg","llama.jpg", "dT4KW.png"])
iface.launch()
|