Spaces:
Sleeping
Sleeping
import gradio | |
import cv2 | |
import numpy as np | |
#num_inference_steps_slider_component_v1 = 121 | |
#num_inference_steps_slider_component_v2 = 3 | |
def inference(img, v1 = "121" , v2 = 9 ): | |
#out = cv2.erode(img,(15,15)) | |
#out = cv2.dilate(out,(55,55)) | |
# https://scikit-image.org/docs/dev/api/skimage.morphology.html#skimage.morphology.remove_small_objects | |
# my_result = cv2.remove_small_objects(binarized.astype(bool), min_size=2, connectivity=2).astype(int) | |
#img_bw = 255*(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) > 5).astype('uint8') | |
#se1 = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5)) | |
#se2 = cv2.getStructuringElement(cv2.MORPH_RECT, (2,2)) | |
#mask = cv2.morphologyEx(img_bw, cv2.MORPH_CLOSE, se1) | |
#mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, se2) | |
#mask = np.dstack([mask, mask, mask]) / 255 | |
#out = img * mask | |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY ) # grayscale | |
#out = cv2.adaptiveThreshold(gray,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY,133,9) | |
#out = cv2.adaptiveThreshold(gray,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY,333,3) | |
out = cv2.GaussianBlur( gray ,(5,5),0) | |
# v1 121 , v2 1 | |
#out = cv2.adaptiveThreshold( out ,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, int( float(v1) ) , int( float(v2) ) ) | |
#out = cv2.adaptiveThreshold( out ,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 77 , int ( v2 ) ) | |
out = cv2.adaptiveThreshold( out ,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 233 , 1 ) | |
#out = blur = cv.GaussianBlur(img,(5,5),0) | |
#out = cv2.threshold(out,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU) | |
#kernel = cv2.getStructuringElement(cv2.MORPH_RECT, kernelSize) | |
#opening = cv2.morphologyEx(gray, cv2.MORPH_OPEN, kernel) | |
return out | |
num_inference_steps_slider_component_v1 = gradio.Slider( | |
label="Number of inference steps", | |
info="The number of denoising steps. More denoising steps " | |
"usually lead to a higher quality image at the", | |
minimum=1, | |
maximum=500, | |
step=1, | |
value=121, | |
) | |
num_inference_steps_slider_component_v2 = gradio.Slider( | |
label="Number of inference steps", | |
info="The number of denoising steps. More denoising steps " | |
"usually lead to a higher quality image at the", | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=3, | |
) | |
# For information on Interfaces, head to https://gradio.app/docs/ | |
# For user guides, head to https://gradio.app/guides/ | |
# For Spaces usage, head to https://huggingface.co/docs/hub/spaces | |
iface = gradio.Interface( | |
fn=inference, | |
inputs=['image',num_inference_steps_slider_component_v1,num_inference_steps_slider_component_v2], | |
outputs='image', | |
title='Noise Removal', | |
description='Remove Noise with OpenCV and Adaptial Gaussian!', | |
examples=[["detail_with_lines_and_noise.jpg", "lama.webp", "dT4KW.png"]] | |
) | |
#examples=["detail_with_lines_and_noise.jpg", "lama.webp", "dT4KW.png"]) | |
#examples=["detail_with_lines_and_noise.jpg", "lama.webp", "test_lines.jpg","llama.jpg", "dT4KW.png"]) | |
iface.launch() | |