gradio_opencv / app.py
emilios's picture
Update app.py
6e7bcf4 verified
import gradio
import cv2
import numpy as np
#num_inference_steps_slider_component_v1 = 121
#num_inference_steps_slider_component_v2 = 3
def inference(img, v1 = "121" , v2 = 9 ):
#out = cv2.erode(img,(15,15))
#out = cv2.dilate(out,(55,55))
# https://scikit-image.org/docs/dev/api/skimage.morphology.html#skimage.morphology.remove_small_objects
# my_result = cv2.remove_small_objects(binarized.astype(bool), min_size=2, connectivity=2).astype(int)
#img_bw = 255*(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) > 5).astype('uint8')
#se1 = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5))
#se2 = cv2.getStructuringElement(cv2.MORPH_RECT, (2,2))
#mask = cv2.morphologyEx(img_bw, cv2.MORPH_CLOSE, se1)
#mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, se2)
#mask = np.dstack([mask, mask, mask]) / 255
#out = img * mask
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY ) # grayscale
#out = cv2.adaptiveThreshold(gray,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY,133,9)
#out = cv2.adaptiveThreshold(gray,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY,333,3)
out = cv2.GaussianBlur( gray ,(5,5),0)
# v1 121 , v2 1
#out = cv2.adaptiveThreshold( out ,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, int( float(v1) ) , int( float(v2) ) )
#out = cv2.adaptiveThreshold( out ,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 77 , int ( v2 ) )
out = cv2.adaptiveThreshold( out ,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 233 , 1 )
#out = blur = cv.GaussianBlur(img,(5,5),0)
#out = cv2.threshold(out,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
#kernel = cv2.getStructuringElement(cv2.MORPH_RECT, kernelSize)
#opening = cv2.morphologyEx(gray, cv2.MORPH_OPEN, kernel)
return out
num_inference_steps_slider_component_v1 = gradio.Slider(
label="Number of inference steps",
info="The number of denoising steps. More denoising steps "
"usually lead to a higher quality image at the",
minimum=1,
maximum=500,
step=1,
value=121,
)
num_inference_steps_slider_component_v2 = gradio.Slider(
label="Number of inference steps",
info="The number of denoising steps. More denoising steps "
"usually lead to a higher quality image at the",
minimum=1,
maximum=100,
step=1,
value=3,
)
# For information on Interfaces, head to https://gradio.app/docs/
# For user guides, head to https://gradio.app/guides/
# For Spaces usage, head to https://huggingface.co/docs/hub/spaces
iface = gradio.Interface(
fn=inference,
inputs=['image',num_inference_steps_slider_component_v1,num_inference_steps_slider_component_v2],
outputs='image',
title='Noise Removal',
description='Remove Noise with OpenCV and Adaptial Gaussian!',
examples=[["detail_with_lines_and_noise.jpg", "lama.webp", "dT4KW.png"]]
)
#examples=["detail_with_lines_and_noise.jpg", "lama.webp", "dT4KW.png"])
#examples=["detail_with_lines_and_noise.jpg", "lama.webp", "test_lines.jpg","llama.jpg", "dT4KW.png"])
iface.launch()