import gradio import cv2 import numpy as np def inference(img): #my_result = cv2.erode(img,(1,1)) #my_result = cv2.dilate(my_result,(1,1)) # https://scikit-image.org/docs/dev/api/skimage.morphology.html#skimage.morphology.remove_small_objects # my_result = cv2.remove_small_objects(binarized.astype(bool), min_size=2, connectivity=2).astype(int) img_bw = 255*(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) > 5).astype('uint8') se1 = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5)) se2 = cv2.getStructuringElement(cv2.MORPH_RECT, (2,2)) mask = cv2.morphologyEx(img_bw, cv2.MORPH_CLOSE, se1) mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, se2) mask = np.dstack([mask, mask, mask]) / 255 out = img * mask return out # For information on Interfaces, head to https://gradio.app/docs/ # For user guides, head to https://gradio.app/guides/ # For Spaces usage, head to https://huggingface.co/docs/hub/spaces iface = gradio.Interface( fn=inference, inputs='image', outputs='image', title='Hello World', description='The simplest interface!', examples=["llama.jpg", "dT4KW.png"]) iface.launch()