gradio_skimage / app.py
emilios's picture
Update app.py
33cb75c verified
raw
history blame
1.57 kB
import gradio
import matplotlib.pyplot as plt
from skimage import morphology,measure,feature
from skimage.measure import label
import numpy as np
import skimage
def inference(img):
out = skimage.color.rgb2gray(img) # gray
#binarized = np.where(grayscale>0.1, 1, 0)
#processed = morphology.remove_small_objects(grayscale.astype(bool), min_size=33, connectivity=4).astype(int)
#out = morphology.remove_small_objects(out , min_size=2, connectivity=4)
#out = morphology.remove_small_holes(out , min_size=2, connectivity=4)
#out = processed
#edges = get_edges(img.copy())
#edges = feature.canny(out, sigma=3) # edge detect via canny with sigma 3
#out = morphology.remove_small_objects(label(edges), 2,) # noise_reduced
#out = morphology.remove_small_objects( out , 2,) # noise_reduced
# black out pixels
#mask_x, mask_y = np.where(processed == 0)
#img[mask_x, mask_y, :3] = 0
#mask_x, mask_y = np.where(processed == 0)
#im[mask_x, mask_y, :3] = 0
#return img
return out
# For information on Interfaces, head to https://gradio.app/docs/
# For user guides, head to https://gradio.app/guides/
# For Spaces usage, head to https://huggingface.co/docs/hub/spaces
iface = gradio.Interface(
fn=inference,
inputs='image',
outputs='image',
title='Noise Removal w skimage',
description='Remove Noise with skimage.morphology!',
examples=["detail_with_lines_and_noise.jpg", "lama.webp", "dT4KW.png"])
#examples=["detail_with_lines_and_noise.jpg", "lama.webp", "test_lines.jpg","llama.jpg", "dT4KW.png"])
iface.launch()