gradio_skimage / app.py
emilios's picture
Update app.py
0bf753b verified
raw
history blame
1.02 kB
import gradio
import matplotlib.pyplot as plt
from skimage import morphology
import numpy as np
import skimage
def inference(img):
grayscale = skimage.color.rgb2gray(im)
binarized = np.where(grayscale>0.1, 1, 0)
processed = morphology.remove_small_objects(binarized.astype(bool), min_size=2, connectivity=2).astype(int)
out = processed
# black out pixels
#mask_x, mask_y = np.where(processed == 0)
#im[mask_x, mask_y, :3] = 0
return out
# For information on Interfaces, head to https://gradio.app/docs/
# For user guides, head to https://gradio.app/guides/
# For Spaces usage, head to https://huggingface.co/docs/hub/spaces
iface = gradio.Interface(
fn=inference,
inputs='image',
outputs='image',
title='Noise Removal w skimage',
description='Remove Noise with skimage.morphology!',
examples=["detail_with_lines_and_noise.jpg", "lama.webp", "dT4KW.png"])
#examples=["detail_with_lines_and_noise.jpg", "lama.webp", "test_lines.jpg","llama.jpg", "dT4KW.png"])
iface.launch()