Spaces:
Running
Running
import streamlit as st | |
import requests | |
import subprocess | |
import atexit | |
import os | |
import signal | |
import os | |
import PyPDF2 | |
from docx import Document | |
from fastapi import UploadFile, FastAPI, File, Form, UploadFile, HTTPException | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_community.vectorstores import FAISS | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
import pickle | |
from datetime import datetime | |
import io | |
from dotenv import load_dotenv | |
class User: | |
def __init__(self, username): | |
self.username = username | |
self.llm = "gemini-pro" | |
self.embedder = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2" | |
async def upload_documents(user: User, files: list[UploadFile]) -> tuple[str, int]: | |
text = await _extract_text_from_document(files) | |
chunks = await _chunk_text(text) | |
pkl_name, status_code = await _create_embeddings_and_save(user, chunks) | |
if status_code == 200: | |
return "Document uploaded successfully.", 200 | |
else: | |
return "Failed to upload document.", 500 | |
async def _extract_text_from_document(files: list[UploadFile]) -> str: | |
text = "" | |
for file in files: | |
byte_object = await file.read() | |
file_name = file.filename | |
file_extension = os.path.splitext(file_name)[1] | |
if file_extension == '.txt': | |
text += byte_object.decode('utf-8') | |
elif file_extension == '.pdf': | |
pdf_reader = PyPDF2.PdfReader(io.BytesIO(byte_object)) | |
for page_number in range(len(pdf_reader.pages)): | |
page = pdf_reader.pages[page_number] | |
text += page.extract_text() | |
elif file_extension == '.docx': | |
doc = Document(io.BytesIO(byte_object)) | |
for paragraph in doc.paragraphs: | |
text += paragraph.text + "\n" | |
return text | |
async def _chunk_text(text: str) -> list[str]: | |
chunks = None | |
text_splitter = CharacterTextSplitter( | |
separator="\n", | |
chunk_size=512, | |
chunk_overlap=10, | |
length_function=len | |
) | |
chunks = text_splitter.split_text(text) | |
return chunks | |
async def _create_embeddings_and_save(user: User, chunks: any) -> FAISS: | |
embeddings = HuggingFaceEmbeddings(model_name=user.embedder) | |
pkl_name = os.path.join(user.username + ".pkl") | |
vector_store = FAISS.from_texts(chunks, embeddings, metadatas=[{"source": f"{pkl_name}:{i}"} for i in range(len(chunks))]) | |
with open(pkl_name, "wb") as f: | |
pickle.dump(vector_store, f) | |
return vector_store | |
async def ask_question(user: User, question: str, api_key: str) -> tuple[str, int]: | |
username = user.username | |
vector_store = await _get_vector_file(username) | |
if vector_store is None: | |
return "Document not found.", 400 | |
if api_key is not None: | |
os.environ["GOOGLE_API_KEY"] = api_key | |
else: | |
is_loaded = load_dotenv() | |
if is_loaded == False: | |
return "API key not found.", 400 | |
llm = ChatGoogleGenerativeAI(model=user.llm, temperature=0, max_output_tokens=256, top_k = 40, top_p = 0.8) | |
docs = vector_store.similarity_search(question) | |
retrieved_chunks = docs[0].page_content + docs[1].page_content + docs[2].page_content | |
system_message="Figure out the answer of the question by the given information pieces. ALWAYS answer with the language of the question." | |
prompt = system_message + "Question: " + question + " Context: " + retrieved_chunks | |
try: | |
response = llm.invoke(prompt) | |
except Exception: | |
return "Wrong API key.", 400 | |
answer = response.content + " **<Most Related Chunk>** " + retrieved_chunks | |
await _log(user, question, system_message, retrieved_chunks, response.content) | |
return answer, 200 | |
async def _get_vector_file(username: str)-> any: | |
with open(username+".pkl", "rb") as f: | |
vector_store = pickle.load(f) | |
return vector_store | |
async def _log(user: User, question: str, system_message: str, retrieved_chunks: str, answer: str): | |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
log_message = ( | |
f"{timestamp}, Username: {user.username}, Question: {question}, " | |
f"LLM: {user.llm}, Embedder: {user.embedder}, System Message: {system_message}, " | |
f"Retrieved Texts: {retrieved_chunks}, Answer: {answer}\n" | |
) | |
with open("log.txt", "a", encoding="utf-8") as file: | |
file.write(log_message) | |
app = FastAPI() | |
async def document_uploader(username: str = Form(...), files: list[UploadFile] = File(...)): | |
user = User(username=username) | |
response, status_code = await upload_documents(user, files) | |
if status_code == 200: | |
return {response} | |
else: | |
raise HTTPException(status_code=status_code, detail=response) | |
async def question_answerer(username: str = Form(...), question: str = Form(...), api_key = File(None)): | |
user = User(username=username) | |
response, status_code = await ask_question(user, question, api_key) | |
if status_code == 200: | |
return {response} | |
else: | |
raise HTTPException(status_code=status_code, detail=response) | |
def main(): | |
st.title("Free Multilingual RAG") | |
tabs = ["Upload Document", "Ask Question"] | |
active_tab = st.radio("Upload documents first, ask questions later:", tabs) | |
if active_tab == "Upload Document": | |
upload_document() | |
elif active_tab == "Ask Question": | |
ask_question() | |
def upload_document(): | |
st.write("Several files can be uploaded, each upload crushes the old one. Depending on the number and size of files, the upload process may take a long time.") | |
username = st.text_input("Enter a username (just something that represents you):") | |
uploaded_files = st.file_uploader("Upload your documents (for now it only works with files that has .txt, .pdf or .docx extension):", accept_multiple_files=True) | |
if uploaded_files: | |
st.write("Number of uploaded files:", len(uploaded_files)) | |
for uploaded_file in uploaded_files: | |
file_details = {"FileName": uploaded_file.name, "FileType": uploaded_file.type, "FileSize": uploaded_file.size} | |
st.write(file_details) | |
files = [("files", (uploaded_file.name, uploaded_file, uploaded_file.type)) for uploaded_file in uploaded_files] | |
payload = {'username': username} | |
with st.spinner('Loading...'): | |
response = requests.post("http://localhost:8000/document-uploader/", files=files, data=payload) | |
if response.status_code == 200: | |
st.success(response.text) | |
else: | |
st.error("Error:", response.text) | |
def ask_question(): | |
username = st.text_input("Enter a username (just something that represents you):") | |
api_key = st.text_input("Add your Google API key. It is free. Key acquisition video: [https://www.youtube.com/watch?v=brCkpzAD0gc]: (If you do not trust you can download and use the app in your local too)", type="password") | |
question = st.text_area("Enter the question you want to ask in your document (the more detailed your question, the more accurate an answer you will get): ") | |
if st.button("Ask"): | |
if not question: | |
st.warning("Please enter a question.") | |
elif not username: | |
st.warning("Please enter a username.") | |
else: | |
payload = {'username': username, 'question': question, 'api_key': api_key} | |
with st.spinner('Question is getting answered...'): | |
response = requests.post("http://localhost:8000/question-answerer/", data=payload) | |
if response.status_code == 200: | |
st.success("Answer: " + response.text) | |
else: | |
print(response) | |
st.error("Error:", response.text) | |
uvicorn_process = None | |
def run_fastapi(): | |
global uvicorn_process | |
if uvicorn_process is None: | |
uvicorn_process = subprocess.Popen(["uvicorn", "app:app", "--host", "127.0.0.1", "--port", "8000"]) | |
print("FastAPI server has been started.") | |
def cleanup(): | |
global uvicorn_process | |
if uvicorn_process: | |
os.kill(uvicorn_process.pid, signal.SIGTERM) | |
uvicorn_process.wait() | |
print("FastAPI server has been closed.") | |
if __name__ == "__main__": | |
run_fastapi() | |
atexit.register(cleanup) | |
main() | |