Spaces:
Running
Running
import gradio as gr | |
import cv2 | |
import numpy as np | |
import mediapipe as mp | |
from mediapipe.tasks import python | |
from mediapipe.tasks.python import vision | |
from mediapipe.python._framework_bindings import image as image_module | |
_Image = image_module.Image | |
from mediapipe.python._framework_bindings import image_frame | |
_ImageFormat = image_frame.ImageFormat | |
# Constants for colors | |
BG_COLOR = (0, 0, 0, 255) # gray with full opacity | |
MASK_COLOR = (255, 255, 255, 255) # white with full opacity | |
# Create the options that will be used for ImageSegmenter | |
base_options = python.BaseOptions(model_asset_path='emirhan.tflite') | |
options = vision.ImageSegmenterOptions(base_options=base_options, | |
output_category_mask=True) | |
# Function to segment hair and generate mask | |
def segment_hair(image): | |
rgba_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGBA) | |
rgba_image[:, :, 3] = 0 # Set alpha channel to empty | |
# Create MP Image object from numpy array | |
mp_image = _Image(image_format=_ImageFormat.SRGBA, data=rgba_image) | |
# Create the image segmenter | |
with vision.ImageSegmenter.create_from_options(options) as segmenter: | |
# Retrieve the masks for the segmented image | |
segmentation_result = segmenter.segment(mp_image) | |
category_mask = segmentation_result.category_mask | |
# Generate solid color images for showing the output segmentation mask. | |
image_data = mp_image.numpy_view() | |
fg_image = np.zeros(image_data.shape, dtype=np.uint8) | |
fg_image[:] = MASK_COLOR | |
bg_image = np.zeros(image_data.shape, dtype=np.uint8) | |
bg_image[:] = BG_COLOR | |
condition = np.stack((category_mask.numpy_view(),) * 4, axis=-1) > 0.2 | |
output_image = np.where(condition, fg_image, bg_image) | |
return cv2.cvtColor(output_image, cv2.COLOR_RGBA2RGB) | |
# Gradio interface | |
iface = gr.Interface( | |
fn=segment_hair, | |
inputs=gr.Image(type="numpy"), | |
outputs=gr.Image(type="numpy"), | |
title="Hair Segmentation", | |
description="Upload an image to segment the hair and generate a mask.", | |
examples=["example.jpeg"] | |
) | |
if __name__ == "__main__": | |
iface.launch() | |