emmas96 commited on
Commit
2f247b2
·
1 Parent(s): 8cfbd33

change figure path

Browse files
Files changed (1) hide show
  1. app.py +7 -8
app.py CHANGED
@@ -45,7 +45,7 @@ def about_page():
45
  """
46
  )
47
 
48
- st.image('hyper-dti.png', caption='Overview of HyperPCM architecture.')
49
 
50
 
51
  def predict_dti():
@@ -95,11 +95,11 @@ def predict_dti():
95
  drug_embedding = [0,1,2,3,4,5]
96
  else:
97
  drug_embedding = None
98
- st.image('molecule_encoder.png')
99
  st.warning('Choose encoder above...')
100
 
101
  if drug_embedding is not None:
102
- st.image('molecule_encoder_done.png')
103
  st.success('Encoding complete.')
104
 
105
  with col2:
@@ -152,11 +152,11 @@ def predict_dti():
152
  break
153
  else:
154
  prot_embedding = None
155
- st.image('protein_encoder.png')
156
  st.warning('Choose encoder above...')
157
 
158
  if prot_embedding is not None:
159
- st.image('protein_encoder_done.png')
160
  st.success('Encoding complete.')
161
 
162
  if drug_embedding is None or prot_embedding is None:
@@ -191,7 +191,7 @@ def retrieval():
191
 
192
  with col3:
193
  if sequence:
194
- st.image('protein_encoder_done.png')
195
 
196
  with st.spinner('Encoding in progress...'):
197
  from bio_embeddings.embed import SeqVecEmbedder
@@ -268,8 +268,7 @@ def display_protein():
268
 
269
  token_list = token_representations.tolist()[0][0][0]
270
 
271
- client = Client(
272
- url=st.secrets["DB_URL"], user=st.secrets["USER"], password=st.secrets["PASSWD"])
273
 
274
  result = client.fetch("SELECT seq, distance('topK=500')(representations, " + str(token_list) + ')'+ "as dist FROM default.esm_protein_indexer_768")
275
 
 
45
  """
46
  )
47
 
48
+ st.image('figures/hyper-dti.png', caption='Overview of HyperPCM architecture.')
49
 
50
 
51
  def predict_dti():
 
95
  drug_embedding = [0,1,2,3,4,5]
96
  else:
97
  drug_embedding = None
98
+ st.image('figures/molecule_encoder.png')
99
  st.warning('Choose encoder above...')
100
 
101
  if drug_embedding is not None:
102
+ st.image('figures/molecule_encoder_done.png')
103
  st.success('Encoding complete.')
104
 
105
  with col2:
 
152
  break
153
  else:
154
  prot_embedding = None
155
+ st.image('figures/protein_encoder.png')
156
  st.warning('Choose encoder above...')
157
 
158
  if prot_embedding is not None:
159
+ st.image('figures/protein_encoder_done.png')
160
  st.success('Encoding complete.')
161
 
162
  if drug_embedding is None or prot_embedding is None:
 
191
 
192
  with col3:
193
  if sequence:
194
+ st.image('figures/protein_encoder_done.png')
195
 
196
  with st.spinner('Encoding in progress...'):
197
  from bio_embeddings.embed import SeqVecEmbedder
 
268
 
269
  token_list = token_representations.tolist()[0][0][0]
270
 
271
+ client = Client(url=st.secrets["DB_URL"], user=st.secrets["USER"], password=st.secrets["PASSWD"])
 
272
 
273
  result = client.fetch("SELECT seq, distance('topK=500')(representations, " + str(token_list) + ')'+ "as dist FROM default.esm_protein_indexer_768")
274