change figure path
Browse files
app.py
CHANGED
@@ -45,7 +45,7 @@ def about_page():
|
|
45 |
"""
|
46 |
)
|
47 |
|
48 |
-
st.image('hyper-dti.png', caption='Overview of HyperPCM architecture.')
|
49 |
|
50 |
|
51 |
def predict_dti():
|
@@ -95,11 +95,11 @@ def predict_dti():
|
|
95 |
drug_embedding = [0,1,2,3,4,5]
|
96 |
else:
|
97 |
drug_embedding = None
|
98 |
-
st.image('molecule_encoder.png')
|
99 |
st.warning('Choose encoder above...')
|
100 |
|
101 |
if drug_embedding is not None:
|
102 |
-
st.image('molecule_encoder_done.png')
|
103 |
st.success('Encoding complete.')
|
104 |
|
105 |
with col2:
|
@@ -152,11 +152,11 @@ def predict_dti():
|
|
152 |
break
|
153 |
else:
|
154 |
prot_embedding = None
|
155 |
-
st.image('protein_encoder.png')
|
156 |
st.warning('Choose encoder above...')
|
157 |
|
158 |
if prot_embedding is not None:
|
159 |
-
st.image('protein_encoder_done.png')
|
160 |
st.success('Encoding complete.')
|
161 |
|
162 |
if drug_embedding is None or prot_embedding is None:
|
@@ -191,7 +191,7 @@ def retrieval():
|
|
191 |
|
192 |
with col3:
|
193 |
if sequence:
|
194 |
-
st.image('protein_encoder_done.png')
|
195 |
|
196 |
with st.spinner('Encoding in progress...'):
|
197 |
from bio_embeddings.embed import SeqVecEmbedder
|
@@ -268,8 +268,7 @@ def display_protein():
|
|
268 |
|
269 |
token_list = token_representations.tolist()[0][0][0]
|
270 |
|
271 |
-
client = Client(
|
272 |
-
url=st.secrets["DB_URL"], user=st.secrets["USER"], password=st.secrets["PASSWD"])
|
273 |
|
274 |
result = client.fetch("SELECT seq, distance('topK=500')(representations, " + str(token_list) + ')'+ "as dist FROM default.esm_protein_indexer_768")
|
275 |
|
|
|
45 |
"""
|
46 |
)
|
47 |
|
48 |
+
st.image('figures/hyper-dti.png', caption='Overview of HyperPCM architecture.')
|
49 |
|
50 |
|
51 |
def predict_dti():
|
|
|
95 |
drug_embedding = [0,1,2,3,4,5]
|
96 |
else:
|
97 |
drug_embedding = None
|
98 |
+
st.image('figures/molecule_encoder.png')
|
99 |
st.warning('Choose encoder above...')
|
100 |
|
101 |
if drug_embedding is not None:
|
102 |
+
st.image('figures/molecule_encoder_done.png')
|
103 |
st.success('Encoding complete.')
|
104 |
|
105 |
with col2:
|
|
|
152 |
break
|
153 |
else:
|
154 |
prot_embedding = None
|
155 |
+
st.image('figures/protein_encoder.png')
|
156 |
st.warning('Choose encoder above...')
|
157 |
|
158 |
if prot_embedding is not None:
|
159 |
+
st.image('figures/protein_encoder_done.png')
|
160 |
st.success('Encoding complete.')
|
161 |
|
162 |
if drug_embedding is None or prot_embedding is None:
|
|
|
191 |
|
192 |
with col3:
|
193 |
if sequence:
|
194 |
+
st.image('figures/protein_encoder_done.png')
|
195 |
|
196 |
with st.spinner('Encoding in progress...'):
|
197 |
from bio_embeddings.embed import SeqVecEmbedder
|
|
|
268 |
|
269 |
token_list = token_representations.tolist()[0][0][0]
|
270 |
|
271 |
+
client = Client(url=st.secrets["DB_URL"], user=st.secrets["USER"], password=st.secrets["PASSWD"])
|
|
|
272 |
|
273 |
result = client.fetch("SELECT seq, distance('topK=500')(representations, " + str(token_list) + ')'+ "as dist FROM default.esm_protein_indexer_768")
|
274 |
|