Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1126,52 +1126,8 @@ def handle_model_choice_change(selected_model):
|
|
1126 |
# Default case: allow interaction
|
1127 |
return gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)
|
1128 |
|
1129 |
-
#
|
1130 |
-
|
1131 |
-
# from diffusers import FluxPipeline
|
1132 |
-
# import os
|
1133 |
-
|
1134 |
-
# # Set PYTORCH_CUDA_ALLOC_CONF to handle memory fragmentation
|
1135 |
-
# os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
|
1136 |
-
|
1137 |
-
# # Check if CUDA (GPU) is available, otherwise fallback to CPU
|
1138 |
-
# device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
1139 |
-
|
1140 |
-
# # Function to initialize Flux bot model with GPU memory management
|
1141 |
-
# def initialize_flux_bot():
|
1142 |
-
# try:
|
1143 |
-
# torch.cuda.empty_cache() # Clear GPU memory cache
|
1144 |
-
# pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.float16) # Use FP16
|
1145 |
-
# pipe.to(device) # Move the model to the correct device (GPU/CPU)
|
1146 |
-
# except torch.cuda.OutOfMemoryError:
|
1147 |
-
# print("CUDA out of memory, switching to CPU.")
|
1148 |
-
# pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.float32) # Use FP32 for CPU
|
1149 |
-
# pipe.to("cpu")
|
1150 |
-
# return pipe
|
1151 |
-
|
1152 |
-
# # Function to generate image using Flux bot on the specified device
|
1153 |
-
# def generate_image_flux(prompt):
|
1154 |
-
# pipe = initialize_flux_bot()
|
1155 |
-
# image = pipe(
|
1156 |
-
# prompt,
|
1157 |
-
# guidance_scale=0.0,
|
1158 |
-
# num_inference_steps=2, # Reduced steps to save memory
|
1159 |
-
# max_sequence_length=128, # Reduced sequence length to save memory
|
1160 |
-
# generator=torch.Generator(device).manual_seed(0)
|
1161 |
-
# ).images[0]
|
1162 |
-
# return image
|
1163 |
-
|
1164 |
-
# # Hardcoded prompts for the images
|
1165 |
-
# hardcoded_prompt_1 = "A high quality cinematic image for Toyota Truck in Birmingham skyline shot in the style of Michael Mann"
|
1166 |
-
# hardcoded_prompt_2 = "A high quality cinematic image for Alabama Quarterback close up emotional shot in the style of Michael Mann"
|
1167 |
-
# hardcoded_prompt_3 = "A high quality cinematic image for Taylor Swift concert in Birmingham skyline style of Michael Mann"
|
1168 |
-
|
1169 |
-
# # Function to update images
|
1170 |
-
# def update_images():
|
1171 |
-
# image_1 = generate_image_flux(hardcoded_prompt_1)
|
1172 |
-
# image_2 = generate_image_flux(hardcoded_prompt_2)
|
1173 |
-
# image_3 = generate_image_flux(hardcoded_prompt_3)
|
1174 |
-
# return image_1, image_2, image_3
|
1175 |
|
1176 |
# Existing prompts for the Flux API
|
1177 |
hardcoded_prompt_1 = "A high quality cinematic image for Toyota Truck in Birmingham skyline shot in the style of Michael Mann"
|
@@ -1180,7 +1136,7 @@ hardcoded_prompt_3 = "A high quality cinematic image for Taylor Swift concert in
|
|
1180 |
|
1181 |
# Function to call the Flux API and generate images
|
1182 |
def generate_image_flux(prompt):
|
1183 |
-
# client = Client("black-forest-labs/FLUX.1-schnell")
|
1184 |
client = Client("Pijush2023/radar_flux")
|
1185 |
result = client.predict(
|
1186 |
prompt=prompt,
|
@@ -1507,13 +1463,7 @@ with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
|
|
1507 |
events_output = gr.HTML(value=fetch_local_events())
|
1508 |
|
1509 |
with gr.Column():
|
1510 |
-
|
1511 |
-
# image_output_2 = gr.Image(value=generate_image_flux(hardcoded_prompt_2), width=400, height=400)
|
1512 |
-
# image_output_3 = gr.Image(value=generate_image_flux(hardcoded_prompt_3), width=400, height=400)
|
1513 |
-
|
1514 |
-
# # Refresh button to update images
|
1515 |
-
# refresh_button = gr.Button("Refresh Images")
|
1516 |
-
# refresh_button.click(fn=update_images, inputs=None, outputs=[image_output_1, image_output_2, image_output_3])
|
1517 |
|
1518 |
# Call update_images during the initial load to display images when the interface appears
|
1519 |
initial_images = update_images()
|
|
|
1126 |
# Default case: allow interaction
|
1127 |
return gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)
|
1128 |
|
1129 |
+
#Flux Coding
|
1130 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1131 |
|
1132 |
# Existing prompts for the Flux API
|
1133 |
hardcoded_prompt_1 = "A high quality cinematic image for Toyota Truck in Birmingham skyline shot in the style of Michael Mann"
|
|
|
1136 |
|
1137 |
# Function to call the Flux API and generate images
|
1138 |
def generate_image_flux(prompt):
|
1139 |
+
# client = Client("black-forest-labs/FLUX.1-schnell",hf_token=hf_token)
|
1140 |
client = Client("Pijush2023/radar_flux")
|
1141 |
result = client.predict(
|
1142 |
prompt=prompt,
|
|
|
1463 |
events_output = gr.HTML(value=fetch_local_events())
|
1464 |
|
1465 |
with gr.Column():
|
1466 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
1467 |
|
1468 |
# Call update_images during the initial load to display images when the interface appears
|
1469 |
initial_images = update_images()
|