enemy7's picture
Upload 1553 files
898c672
raw
history blame
4.05 kB
local math2d = {}
math2d.position = {}
-- Takes a position that might be either a two element array, or a table
-- with x and y keys, and returns a position with x and y keys.
math2d.position.ensure_xy = function(pos)
local new_pos
if pos.x ~= nil then
new_pos = {x = pos.x, y = pos.y}
else
new_pos = {x = pos[1], y = pos[2]}
end
return new_pos
end
math2d.position.distance_squared = function(p1, p2)
p1 = math2d.position.ensure_xy(p1)
p2 = math2d.position.ensure_xy(p2)
local dx = p1.x - p2.x
local dy = p1.y - p2.y
return dx * dx + dy * dy
end
math2d.position.distance = function(p1, p2)
return math.sqrt(math2d.position.distance_squared(p1, p2))
end
math2d.position.rotate_vector = function(vector, angle_in_deg)
local cosAngle = math.cos(math.rad(angle_in_deg))
local sinAngle = math.sin(math.rad(angle_in_deg))
vector = math2d.position.ensure_xy(vector)
local x = cosAngle * vector.x - sinAngle * vector.y
local y = sinAngle * vector.x + cosAngle * vector.y
return {x = x, y = y}
end
math2d.position.subtract = function(p1, p2)
p1 = math2d.position.ensure_xy(p1)
p2 = math2d.position.ensure_xy(p2)
return {x = p1.x - p2.x, y = p1.y - p2.y}
end
math2d.position.add = function(p1, p2)
p1 = math2d.position.ensure_xy(p1)
p2 = math2d.position.ensure_xy(p2)
return {x = p1.x + p2.x, y = p1.y + p2.y}
end
math2d.position.multiply_scalar = function(vec, scalar)
vec = math2d.position.ensure_xy(vec)
return {x = vec.x * scalar, y = vec.y * scalar}
end
math2d.position.divide_scalar = function(vec, scalar)
vec = math2d.position.ensure_xy(vec)
return {x = vec.x / scalar, y = vec.y / scalar}
end
math2d.position.vector_length = function(vec)
vec = math2d.position.ensure_xy(vec)
return math.sqrt(vec.x*vec.x + vec.y*vec.y)
end
math2d.position.get_normalised = function(vec)
vec = math2d.position.ensure_xy(vec)
local length = math.sqrt(vec.x*vec.x + vec.y*vec.y)
return {x = vec.x / length, y = vec.y / length}
end
math2d.bounding_box = {}
-- Takes a bounding box with positions that might be either two element arrays, or tables
-- with x and y keys, and returns a bounding box with positions with x and y keys.
math2d.bounding_box.ensure_xy = function(bounding_box)
local new_bounding_box = {}
new_bounding_box.left_top = math2d.position.ensure_xy(bounding_box.left_top)
new_bounding_box.right_bottom = math2d.position.ensure_xy(bounding_box.right_bottom)
return new_bounding_box
end
function math2d.bounding_box.get_centre(box)
box = math2d.bounding_box.ensure_xy(box)
local x = box.left_top.x + (box.right_bottom.x - box.left_top.x) / 2
local y = box.left_top.y + (box.right_bottom.y - box.left_top.y) / 2
return {x = x, y = y}
end
function math2d.bounding_box.contains_point(box, point)
box = math2d.bounding_box.ensure_xy(box)
point = math2d.position.ensure_xy(point)
return box.left_top.x <= point.x and box.right_bottom.x >= point.x and
box.left_top.y <= point.y and box.right_bottom.y >= point.y
end
function math2d.bounding_box.contains_box(box, other)
box = math2d.bounding_box.ensure_xy(box)
other = math2d.bounding_box.ensure_xy(other)
return box.left_top.x <= other.left_top.x and
box.left_top.y <= other.left_top.y and
box.right_bottom.x >= other.right_bottom.x and
box.right_bottom.y >= other.right_bottom.y
end
function math2d.bounding_box.collides_with(box1,box2)
box1 = math2d.bounding_box.ensure_xy(box1)
box2 = math2d.bounding_box.ensure_xy(box2)
return box1.left_top.x < box2.right_bottom.x and
box2.left_top.x < box1.right_bottom.x and
box1.left_top.y < box2.right_bottom.y and
box2.left_top.y < box1.right_bottom.y
end
function math2d.bounding_box.create_from_centre(centre, width, height)
height = height or width
centre = math2d.position.ensure_xy(centre)
return
{
left_top = { x = centre.x - width / 2, y = centre.y - height / 2},
right_bottom = {x = centre.x + width / 2, y = centre.y + height / 2}
}
end
return math2d