|
local math2d = {} |
|
|
|
math2d.position = {} |
|
|
|
|
|
|
|
math2d.position.ensure_xy = function(pos) |
|
local new_pos |
|
|
|
if pos.x ~= nil then |
|
new_pos = {x = pos.x, y = pos.y} |
|
else |
|
new_pos = {x = pos[1], y = pos[2]} |
|
end |
|
|
|
return new_pos |
|
end |
|
|
|
math2d.position.distance_squared = function(p1, p2) |
|
p1 = math2d.position.ensure_xy(p1) |
|
p2 = math2d.position.ensure_xy(p2) |
|
|
|
local dx = p1.x - p2.x |
|
local dy = p1.y - p2.y |
|
return dx * dx + dy * dy |
|
end |
|
|
|
math2d.position.distance = function(p1, p2) |
|
return math.sqrt(math2d.position.distance_squared(p1, p2)) |
|
end |
|
|
|
math2d.position.rotate_vector = function(vector, angle_in_deg) |
|
local cosAngle = math.cos(math.rad(angle_in_deg)) |
|
local sinAngle = math.sin(math.rad(angle_in_deg)) |
|
|
|
vector = math2d.position.ensure_xy(vector) |
|
local x = cosAngle * vector.x - sinAngle * vector.y |
|
local y = sinAngle * vector.x + cosAngle * vector.y |
|
|
|
return {x = x, y = y} |
|
end |
|
|
|
math2d.position.subtract = function(p1, p2) |
|
p1 = math2d.position.ensure_xy(p1) |
|
p2 = math2d.position.ensure_xy(p2) |
|
|
|
return {x = p1.x - p2.x, y = p1.y - p2.y} |
|
end |
|
|
|
math2d.position.add = function(p1, p2) |
|
p1 = math2d.position.ensure_xy(p1) |
|
p2 = math2d.position.ensure_xy(p2) |
|
|
|
return {x = p1.x + p2.x, y = p1.y + p2.y} |
|
end |
|
|
|
math2d.position.multiply_scalar = function(vec, scalar) |
|
vec = math2d.position.ensure_xy(vec) |
|
return {x = vec.x * scalar, y = vec.y * scalar} |
|
end |
|
|
|
math2d.position.divide_scalar = function(vec, scalar) |
|
vec = math2d.position.ensure_xy(vec) |
|
return {x = vec.x / scalar, y = vec.y / scalar} |
|
end |
|
|
|
math2d.position.vector_length = function(vec) |
|
vec = math2d.position.ensure_xy(vec) |
|
return math.sqrt(vec.x*vec.x + vec.y*vec.y) |
|
end |
|
|
|
math2d.position.get_normalised = function(vec) |
|
vec = math2d.position.ensure_xy(vec) |
|
|
|
local length = math.sqrt(vec.x*vec.x + vec.y*vec.y) |
|
return {x = vec.x / length, y = vec.y / length} |
|
end |
|
|
|
math2d.bounding_box = {} |
|
|
|
|
|
|
|
math2d.bounding_box.ensure_xy = function(bounding_box) |
|
local new_bounding_box = {} |
|
new_bounding_box.left_top = math2d.position.ensure_xy(bounding_box.left_top) |
|
new_bounding_box.right_bottom = math2d.position.ensure_xy(bounding_box.right_bottom) |
|
return new_bounding_box |
|
end |
|
|
|
function math2d.bounding_box.get_centre(box) |
|
box = math2d.bounding_box.ensure_xy(box) |
|
|
|
local x = box.left_top.x + (box.right_bottom.x - box.left_top.x) / 2 |
|
local y = box.left_top.y + (box.right_bottom.y - box.left_top.y) / 2 |
|
|
|
return {x = x, y = y} |
|
end |
|
|
|
function math2d.bounding_box.contains_point(box, point) |
|
box = math2d.bounding_box.ensure_xy(box) |
|
point = math2d.position.ensure_xy(point) |
|
|
|
return box.left_top.x <= point.x and box.right_bottom.x >= point.x and |
|
box.left_top.y <= point.y and box.right_bottom.y >= point.y |
|
end |
|
|
|
function math2d.bounding_box.contains_box(box, other) |
|
box = math2d.bounding_box.ensure_xy(box) |
|
other = math2d.bounding_box.ensure_xy(other) |
|
|
|
return box.left_top.x <= other.left_top.x and |
|
box.left_top.y <= other.left_top.y and |
|
box.right_bottom.x >= other.right_bottom.x and |
|
box.right_bottom.y >= other.right_bottom.y |
|
end |
|
|
|
function math2d.bounding_box.collides_with(box1,box2) |
|
box1 = math2d.bounding_box.ensure_xy(box1) |
|
box2 = math2d.bounding_box.ensure_xy(box2) |
|
|
|
return box1.left_top.x < box2.right_bottom.x and |
|
box2.left_top.x < box1.right_bottom.x and |
|
box1.left_top.y < box2.right_bottom.y and |
|
box2.left_top.y < box1.right_bottom.y |
|
end |
|
|
|
function math2d.bounding_box.create_from_centre(centre, width, height) |
|
height = height or width |
|
centre = math2d.position.ensure_xy(centre) |
|
|
|
return |
|
{ |
|
left_top = { x = centre.x - width / 2, y = centre.y - height / 2}, |
|
right_bottom = {x = centre.x + width / 2, y = centre.y + height / 2} |
|
} |
|
end |
|
|
|
return math2d |