local math2d = {} math2d.position = {} -- Takes a position that might be either a two element array, or a table -- with x and y keys, and returns a position with x and y keys. math2d.position.ensure_xy = function(pos) local new_pos if pos.x ~= nil then new_pos = {x = pos.x, y = pos.y} else new_pos = {x = pos[1], y = pos[2]} end return new_pos end math2d.position.distance_squared = function(p1, p2) p1 = math2d.position.ensure_xy(p1) p2 = math2d.position.ensure_xy(p2) local dx = p1.x - p2.x local dy = p1.y - p2.y return dx * dx + dy * dy end math2d.position.distance = function(p1, p2) return math.sqrt(math2d.position.distance_squared(p1, p2)) end math2d.position.rotate_vector = function(vector, angle_in_deg) local cosAngle = math.cos(math.rad(angle_in_deg)) local sinAngle = math.sin(math.rad(angle_in_deg)) vector = math2d.position.ensure_xy(vector) local x = cosAngle * vector.x - sinAngle * vector.y local y = sinAngle * vector.x + cosAngle * vector.y return {x = x, y = y} end math2d.position.subtract = function(p1, p2) p1 = math2d.position.ensure_xy(p1) p2 = math2d.position.ensure_xy(p2) return {x = p1.x - p2.x, y = p1.y - p2.y} end math2d.position.add = function(p1, p2) p1 = math2d.position.ensure_xy(p1) p2 = math2d.position.ensure_xy(p2) return {x = p1.x + p2.x, y = p1.y + p2.y} end math2d.position.multiply_scalar = function(vec, scalar) vec = math2d.position.ensure_xy(vec) return {x = vec.x * scalar, y = vec.y * scalar} end math2d.position.divide_scalar = function(vec, scalar) vec = math2d.position.ensure_xy(vec) return {x = vec.x / scalar, y = vec.y / scalar} end math2d.position.vector_length = function(vec) vec = math2d.position.ensure_xy(vec) return math.sqrt(vec.x*vec.x + vec.y*vec.y) end math2d.position.get_normalised = function(vec) vec = math2d.position.ensure_xy(vec) local length = math.sqrt(vec.x*vec.x + vec.y*vec.y) return {x = vec.x / length, y = vec.y / length} end math2d.bounding_box = {} -- Takes a bounding box with positions that might be either two element arrays, or tables -- with x and y keys, and returns a bounding box with positions with x and y keys. math2d.bounding_box.ensure_xy = function(bounding_box) local new_bounding_box = {} new_bounding_box.left_top = math2d.position.ensure_xy(bounding_box.left_top) new_bounding_box.right_bottom = math2d.position.ensure_xy(bounding_box.right_bottom) return new_bounding_box end function math2d.bounding_box.get_centre(box) box = math2d.bounding_box.ensure_xy(box) local x = box.left_top.x + (box.right_bottom.x - box.left_top.x) / 2 local y = box.left_top.y + (box.right_bottom.y - box.left_top.y) / 2 return {x = x, y = y} end function math2d.bounding_box.contains_point(box, point) box = math2d.bounding_box.ensure_xy(box) point = math2d.position.ensure_xy(point) return box.left_top.x <= point.x and box.right_bottom.x >= point.x and box.left_top.y <= point.y and box.right_bottom.y >= point.y end function math2d.bounding_box.contains_box(box, other) box = math2d.bounding_box.ensure_xy(box) other = math2d.bounding_box.ensure_xy(other) return box.left_top.x <= other.left_top.x and box.left_top.y <= other.left_top.y and box.right_bottom.x >= other.right_bottom.x and box.right_bottom.y >= other.right_bottom.y end function math2d.bounding_box.collides_with(box1,box2) box1 = math2d.bounding_box.ensure_xy(box1) box2 = math2d.bounding_box.ensure_xy(box2) return box1.left_top.x < box2.right_bottom.x and box2.left_top.x < box1.right_bottom.x and box1.left_top.y < box2.right_bottom.y and box2.left_top.y < box1.right_bottom.y end function math2d.bounding_box.create_from_centre(centre, width, height) height = height or width centre = math2d.position.ensure_xy(centre) return { left_top = { x = centre.x - width / 2, y = centre.y - height / 2}, right_bottom = {x = centre.x + width / 2, y = centre.y + height / 2} } end return math2d