Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- Dockerfile +9 -0
- app.py +53 -0
- requirements.txt +4 -0
Dockerfile
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9
|
2 |
+
|
3 |
+
WORKDIR /app
|
4 |
+
|
5 |
+
COPY requirements.txt /app/
|
6 |
+
RUN pip3 install -r requirements.txt
|
7 |
+
COPY . /app
|
8 |
+
|
9 |
+
CMD flask run -h 0.0.0.0 -p 10000
|
app.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask
|
2 |
+
from PIL import Image
|
3 |
+
import numpy as np
|
4 |
+
import tensorflow as tf
|
5 |
+
import requests
|
6 |
+
import io
|
7 |
+
|
8 |
+
# Initialize the Flask application
|
9 |
+
app = Flask(__name__)
|
10 |
+
|
11 |
+
# Load the trained model
|
12 |
+
model = tf.keras.models.load_model('./save_model.h5',compile=False)
|
13 |
+
|
14 |
+
# Route for object detection
|
15 |
+
@app.route('/detect-object/<id>', methods=['POST','GET'])
|
16 |
+
def detect_pothole(id):
|
17 |
+
# Get the image file from the request
|
18 |
+
try :
|
19 |
+
image_file = io.BytesIO(requests.get(f"https://firebasestorage.googleapis.com/v0/b/miniproj-2f595.appspot.com/o/{id}.jpg?alt=media&token=eca9d563-f526-4d9f-b443-72eb653b30d0").content)
|
20 |
+
|
21 |
+
print(f"https://firebasestorage.googleapis.com/v0/b/miniproj-2f595.appspot.com/o/{id}.jpg?alt=media&token=eca9d563-f526-4d9f-b443-72eb653b30d0")
|
22 |
+
|
23 |
+
# Load and preprocess the image
|
24 |
+
image = Image.open(image_file)
|
25 |
+
image = image.resize((64, 64))
|
26 |
+
image = np.array(image)
|
27 |
+
image = image / 255.0
|
28 |
+
image = np.expand_dims(image, axis=0)
|
29 |
+
|
30 |
+
# Debug statements
|
31 |
+
print('Image shape:', image.shape)
|
32 |
+
print('Image data:', image)
|
33 |
+
|
34 |
+
# Make predictions
|
35 |
+
result = model.predict(image)
|
36 |
+
|
37 |
+
# Convert the prediction to a label
|
38 |
+
if result[0][0] == 1:
|
39 |
+
prediction = 'pothole'
|
40 |
+
else:
|
41 |
+
prediction = 'Normal'
|
42 |
+
|
43 |
+
except :
|
44 |
+
prediction = 'error'
|
45 |
+
|
46 |
+
# Return the prediction as a JSON response
|
47 |
+
response = {'prediction': prediction}
|
48 |
+
|
49 |
+
return response
|
50 |
+
|
51 |
+
# Run the Flask application
|
52 |
+
if __name__ == '__main__':
|
53 |
+
app.run()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
tensorflow
|
2 |
+
Flask
|
3 |
+
Pillow
|
4 |
+
requests
|