Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,61 +1,435 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from flask import Flask
|
2 |
-
from
|
3 |
-
import
|
|
|
|
|
4 |
import tensorflow as tf
|
5 |
-
import
|
6 |
-
import
|
7 |
|
8 |
-
import
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
|
18 |
-
|
19 |
-
def
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
#
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# from flask import Flask
|
2 |
+
# from PIL import Image
|
3 |
+
# import numpy as np
|
4 |
+
# import tensorflow as tf
|
5 |
+
# import requests
|
6 |
+
# import io
|
7 |
+
|
8 |
+
# import os
|
9 |
+
|
10 |
+
# os.system("python3 -m http.server 7860 -b 0.0.0.0 &")
|
11 |
+
# # Initialize the Flask application
|
12 |
+
# app = Flask(__name__)
|
13 |
+
|
14 |
+
# # Load the trained model
|
15 |
+
# model = tf.keras.models.load_model('./save_model.h5',compile=False)
|
16 |
+
|
17 |
+
|
18 |
+
# @app.route('/')
|
19 |
+
# def aaa():
|
20 |
+
# return "hi"
|
21 |
+
|
22 |
+
# # Route for object detection
|
23 |
+
# @app.route('/detect-object/<id>', methods=['POST','GET'])
|
24 |
+
# def detect_pothole(id):
|
25 |
+
# # Get the image file from the request
|
26 |
+
# try :
|
27 |
+
# image_file = io.BytesIO(requests.get(f"https://firebasestorage.googleapis.com/v0/b/miniproj-2f595.appspot.com/o/{id}.jpg?alt=media&token=eca9d563-f526-4d9f-b443-72eb653b30d0").content)
|
28 |
+
|
29 |
+
# print(f"https://firebasestorage.googleapis.com/v0/b/miniproj-2f595.appspot.com/o/{id}.jpg?alt=media&token=eca9d563-f526-4d9f-b443-72eb653b30d0")
|
30 |
+
|
31 |
+
# # Load and preprocess the image
|
32 |
+
# image = Image.open(image_file)
|
33 |
+
# image = image.resize((64, 64))
|
34 |
+
# image = np.array(image)
|
35 |
+
# image = image / 255.0
|
36 |
+
# image = np.expand_dims(image, axis=0)
|
37 |
+
|
38 |
+
# # Debug statements
|
39 |
+
# print('Image shape:', image.shape)
|
40 |
+
# print('Image data:', image)
|
41 |
+
|
42 |
+
# # Make predictions
|
43 |
+
# result = model.predict(image)
|
44 |
+
|
45 |
+
# # Convert the prediction to a label
|
46 |
+
# if result[0][0] == 1:
|
47 |
+
# prediction = 'pothole'
|
48 |
+
# else:
|
49 |
+
# prediction = 'Normal'
|
50 |
+
|
51 |
+
# except :
|
52 |
+
# prediction = 'error'
|
53 |
+
|
54 |
+
# # Return the prediction as a JSON response
|
55 |
+
# response = {'prediction': prediction}
|
56 |
+
|
57 |
+
# return response
|
58 |
+
|
59 |
+
# # Run the Flask application
|
60 |
+
# if __name__ == '__main__':
|
61 |
+
# app.run()
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
from flask import Flask
|
66 |
+
from flask import render_template
|
67 |
+
import random
|
68 |
+
from flask import Flask, request
|
69 |
+
import pandas as pd
|
70 |
import tensorflow as tf
|
71 |
+
import tensorflow_hub as hub
|
72 |
+
import numpy as np
|
73 |
|
74 |
+
import nltk
|
75 |
+
from nltk.corpus import stopwords
|
76 |
|
77 |
+
import emoji
|
78 |
+
import re
|
79 |
+
from sklearn.pipeline import Pipeline
|
80 |
|
81 |
+
MAX_LENGTH = 50
|
82 |
+
MAX_CURRENCY_FLAG = 2
|
83 |
+
MAX_SPAM_WORDS = 1
|
84 |
+
MAX_EMOJI = 2
|
85 |
+
MAX_CONATANS = 1
|
86 |
+
MAX_EMAIL= 1
|
87 |
+
MAX_PHONE = 1
|
88 |
|
89 |
|
90 |
+
class RemoveStopWordsPunctuation:
|
91 |
+
def fit(self, x, y=None):
|
92 |
+
return self
|
93 |
+
|
94 |
+
def __remove_punctuation_stopwords(self, text):
|
95 |
+
pattern = re.compile("[{}]".format(re.escape("!\"#&'()*,-/:;<=>?[\\]^_`{|}~")))
|
96 |
+
text = " ".join(
|
97 |
+
[
|
98 |
+
word.strip()
|
99 |
+
for word in pattern.sub(" ", text.lower()).split()
|
100 |
+
if word not in set(stopwords.words("english"))
|
101 |
+
]
|
102 |
+
)
|
103 |
+
return text
|
104 |
+
|
105 |
+
def transform(self, df):
|
106 |
+
df["Comment"] = df["Comment"].apply(self.__remove_punctuation_stopwords)
|
107 |
+
return df
|
108 |
+
|
109 |
+
|
110 |
+
class AddLengthFlag:
|
111 |
+
def fit(self, x, y=None):
|
112 |
+
return self
|
113 |
+
|
114 |
+
def transform(self, X):
|
115 |
+
X["length"] = X["Comment"].str.len().astype(np.float32) / MAX_LENGTH
|
116 |
+
return X
|
117 |
+
|
118 |
+
|
119 |
+
class AddCurrencyFlag:
|
120 |
+
def __init__(self) -> None:
|
121 |
+
self.currency_symbols = ["โค", "โจ", "โฌ", "โน", "โฟ", "$"]
|
122 |
+
self.pattern = "([\$โคโจโฌโนโฟ]+ *[0-9]* *[\.,]?[0-9]*)|([0-9]* *[\.,]?[0-9]* *[\$โคโจโฌโนโฟ]+)"
|
123 |
+
|
124 |
+
def fit(self, x, y=None):
|
125 |
+
return self
|
126 |
+
|
127 |
+
def __add_currency_count(self, text):
|
128 |
+
return len(re.findall(self.pattern, text)) / MAX_CURRENCY_FLAG
|
129 |
+
|
130 |
+
# def __add_currency_count(self,text):
|
131 |
+
# return sum(text.count(symbol) for symbol in self.currency_symbols )
|
132 |
+
|
133 |
+
def transform(self, df):
|
134 |
+
df["currency"] = df["Comment"].apply(self.__add_currency_count).astype(np.float32)
|
135 |
+
return df
|
136 |
+
|
137 |
+
|
138 |
+
class AddSpamWordsFlag:
|
139 |
+
def __init__(self) -> None:
|
140 |
+
self.spam_words = [
|
141 |
+
"morning",
|
142 |
+
"good"
|
143 |
+
"urgent",
|
144 |
+
"exclusive",
|
145 |
+
"limited time",
|
146 |
+
"free",
|
147 |
+
"guaranteed",
|
148 |
+
"act now",
|
149 |
+
"discount",
|
150 |
+
"special offer",
|
151 |
+
"prize",
|
152 |
+
"instant",
|
153 |
+
"cash",
|
154 |
+
"save",
|
155 |
+
"win",
|
156 |
+
"best",
|
157 |
+
"secret",
|
158 |
+
"incredible",
|
159 |
+
"congratulations",
|
160 |
+
"approved",
|
161 |
+
"risk free",
|
162 |
+
"hidden",
|
163 |
+
"bonus",
|
164 |
+
"sale",
|
165 |
+
"amazing",
|
166 |
+
"extra cash",
|
167 |
+
"opportunity",
|
168 |
+
"easy",
|
169 |
+
"double your",
|
170 |
+
"best price",
|
171 |
+
"cash back",
|
172 |
+
"deal",
|
173 |
+
"earn",
|
174 |
+
"money",
|
175 |
+
"no obligation",
|
176 |
+
"profit",
|
177 |
+
"results",
|
178 |
+
"exciting",
|
179 |
+
"unbelievable",
|
180 |
+
"jackpot",
|
181 |
+
"fantastic",
|
182 |
+
"instant access",
|
183 |
+
"million dollars",
|
184 |
+
"discounted",
|
185 |
+
"last chance",
|
186 |
+
"exclusive offer",
|
187 |
+
"big savings",
|
188 |
+
"limited offer",
|
189 |
+
"free trial",
|
190 |
+
"special promotion",
|
191 |
+
"secret revealed",
|
192 |
+
"valuable",
|
193 |
+
"money-back guarantee",
|
194 |
+
"lowest price",
|
195 |
+
"save money",
|
196 |
+
"make money",
|
197 |
+
"no risk",
|
198 |
+
"exclusive deal",
|
199 |
+
"limited supply",
|
200 |
+
"huge",
|
201 |
+
"incredible offer",
|
202 |
+
"prize winner",
|
203 |
+
"earn extra income",
|
204 |
+
"limited spots",
|
205 |
+
"new offer",
|
206 |
+
"best deal",
|
207 |
+
"don't miss out",
|
208 |
+
"great savings",
|
209 |
+
"top offer",
|
210 |
+
"double your income",
|
211 |
+
"discount code",
|
212 |
+
"fast cash",
|
213 |
+
"top-rated",
|
214 |
+
"best value",
|
215 |
+
"no cost",
|
216 |
+
"elite",
|
217 |
+
"act fast",
|
218 |
+
"unbeatable",
|
219 |
+
"cash prize",
|
220 |
+
"limited availability",
|
221 |
+
"special discount",
|
222 |
+
"quick cash",
|
223 |
+
"no catch",
|
224 |
+
"instant approval",
|
225 |
+
"big discount",
|
226 |
+
"easy money",
|
227 |
+
"insider",
|
228 |
+
"invitation",
|
229 |
+
"free shipping",
|
230 |
+
"huge discount",
|
231 |
+
"extra income",
|
232 |
+
"secret formula",
|
233 |
+
"no strings attached",
|
234 |
+
"money-making",
|
235 |
+
"dream come true",
|
236 |
+
"massive",
|
237 |
+
"free gift",
|
238 |
+
"incredible opportunity",
|
239 |
+
"risk-free trial",
|
240 |
+
"instant money",
|
241 |
+
"special price",
|
242 |
+
"no purchase necessary",
|
243 |
+
"now",
|
244 |
+
]
|
245 |
+
|
246 |
+
def fit(self, x, y=None):
|
247 |
+
return self
|
248 |
+
|
249 |
+
def __add_currency_count(self, text):
|
250 |
+
return float(sum(text.count(symbol) for symbol in self.spam_words) / MAX_SPAM_WORDS)
|
251 |
+
|
252 |
+
def transform(self, df):
|
253 |
+
df["spam_word"] = df["Comment"].apply(self.__add_currency_count).astype(np.float32)
|
254 |
+
return df
|
255 |
+
|
256 |
+
|
257 |
+
class AddEmojiFlag:
|
258 |
+
def __init__(self) -> None:
|
259 |
+
self.emoji_symbols = "[๐ญ|๐|๐|๐|๐|๐ฏ|๐|๐|๐ธ|๐|๐ข|๐|๐ฒ|๐ฃ|๐ฑ|๐ผ|๐|โณ|โจ|๐|๐|๐|๐|๐ก|๐ฐ|๐|โญ|๐|๐ค|โก|๐|๐ต|๐|๐ช|๐|๐|๐ฐ|โ|๐จ|๐ข|๐ฎ|๐ฅ|๐|๐ฅ|๐|๐ฏ|๐ถ|๐|๐|๐|๐|๐|๐|๐ฑ|๐|๐ค|๐
|๐|๐ฃ|๐ฅ]"
|
260 |
+
|
261 |
+
def fit(self, x, y=None):
|
262 |
+
return self
|
263 |
+
|
264 |
+
def __add_currency_count(self, text):
|
265 |
+
return float(len(re.findall(self.emoji_symbols, text)) / MAX_EMOJI)
|
266 |
+
|
267 |
+
def transform(self, df):
|
268 |
+
df["emoji"] = df["Comment"].apply(self.__add_currency_count).astype(np.float32)
|
269 |
+
return df
|
270 |
+
|
271 |
+
|
272 |
+
class AddContainFlag:
|
273 |
+
def fit(self, x, y=None):
|
274 |
+
return self
|
275 |
+
|
276 |
+
def __add_first_count(self, text):
|
277 |
+
pattern = "[0-9]*%|T&C"
|
278 |
+
return len(re.findall(pattern, text))
|
279 |
+
|
280 |
+
def __add_second_count(self, text):
|
281 |
+
pattern = "(https:\/\/www\.|http:\/\/www\.|https:\/\/|http:\/\/)?[a-zA-Z0-9]{2,}(\.[a-zA-Z0-9]{2,})(\.[a-zA-Z0-9]{2,})?"
|
282 |
+
return len(re.findall(pattern, text))
|
283 |
+
|
284 |
+
def transform(self, df):
|
285 |
+
df["contain"] = df["Comment"].apply(self.__add_first_count)
|
286 |
+
df["contain"] = df["contain"] + df["Comment"].apply(self.__add_second_count)
|
287 |
+
df['contain'] = df['contain'].astype(np.float32) / MAX_CONATANS
|
288 |
+
return df
|
289 |
+
|
290 |
+
|
291 |
+
class AddEmailFlag:
|
292 |
+
def fit(self, x, y=None):
|
293 |
+
return self
|
294 |
+
|
295 |
+
def __add_email_count(self, text):
|
296 |
+
pattern = "[\w]+@[\w]+\.\w+"
|
297 |
+
return float(len(re.findall(pattern, text)) /MAX_EMAIL)
|
298 |
+
|
299 |
+
def transform(self, df):
|
300 |
+
df["email"] = df["Comment"].apply(self.__add_email_count).astype(np.float32)
|
301 |
+
return df
|
302 |
+
|
303 |
+
|
304 |
+
class AddPhoneFlag:
|
305 |
+
def fit(self, x, y=None):
|
306 |
+
return self
|
307 |
+
|
308 |
+
def __add_phone_no_count(self, text):
|
309 |
+
pattern = "\+?[0-9]?[0-9]? ?0?[0-9]{10}"
|
310 |
+
return len(re.findall(pattern, text))
|
311 |
+
|
312 |
+
def __add_phone_no_count_1(self, text):
|
313 |
+
pattern = "\+?[0-9]?\d{3}[ -]?\d{3}[ -]?\d{4}"
|
314 |
+
return len(re.findall(pattern, text))
|
315 |
+
|
316 |
+
def transform(self, df):
|
317 |
+
df["phone"] = df["Comment"].apply(self.__add_phone_no_count)
|
318 |
+
df["phone"] = df["phone"] + df["Comment"].apply(self.__add_phone_no_count_1)
|
319 |
+
df["phone"] = df["phone"].astype(np.float32) / MAX_PHONE
|
320 |
+
|
321 |
+
|
322 |
+
return df
|
323 |
+
|
324 |
+
|
325 |
+
class RemovePhoneLinkEmail:
|
326 |
+
def fit(self, x, y=None):
|
327 |
+
return self
|
328 |
+
|
329 |
+
def __remove(self, text):
|
330 |
+
text = re.sub("\$[0-9]*([\.,][0-9]{2})*\$?", "", text)
|
331 |
+
text = re.sub("\+?[0-9]?[0-9]? ?0?[0-9]{10}", "", text)
|
332 |
+
text = re.sub("\+?[0-9]?\d{3}[ -]?\d{3}[ -]?\d{4}", "", text)
|
333 |
+
text = re.sub(
|
334 |
+
r"(https:\/\/www\.|http:\/\/www\.|https:\/\/|http:\/\/)?[a-zA-Z0-9]{2,}(\.[a-zA-Z0-9]{2,})(\.[a-zA-Z0-9]{2,})?",
|
335 |
+
"",
|
336 |
+
text,
|
337 |
+
)
|
338 |
+
text = re.sub(r"[\w]+@[\w]+\.\w+", "", text)
|
339 |
+
text = emoji.replace_emoji(text)
|
340 |
+
return text
|
341 |
+
|
342 |
+
def transform(self, df):
|
343 |
+
df["Comment"] = df["Comment"].apply(self.__remove)
|
344 |
+
return df
|
345 |
+
|
346 |
+
|
347 |
+
class LemmatizeText:
|
348 |
+
def __init__(self):
|
349 |
+
self.lemmatizer = nltk.WordNetLemmatizer()
|
350 |
+
|
351 |
+
def fit(self, X, y=None):
|
352 |
+
return self
|
353 |
+
|
354 |
+
def __lemmatize_text(self, text):
|
355 |
+
return " ".join(
|
356 |
+
[self.lemmatizer.lemmatize(word) for word in re.split("\W+", text)]
|
357 |
+
).strip()
|
358 |
+
|
359 |
+
def transform(self, df):
|
360 |
+
df["Comment"] = df["Comment"].map(lambda text: self.__lemmatize_text(text))
|
361 |
+
return df
|
362 |
+
|
363 |
+
|
364 |
+
|
365 |
+
pipe = Pipeline([
|
366 |
+
|
367 |
+
("AddCurrencyFlag",AddCurrencyFlag()),
|
368 |
+
("AddSpamWordsFlag",AddSpamWordsFlag()),
|
369 |
+
("AddEmojiFlag",AddEmojiFlag()),
|
370 |
+
("AddContainFlag",AddContainFlag()),
|
371 |
+
("AddEmailFlag",AddEmailFlag()),
|
372 |
+
("AddPhoneFlag",AddPhoneFlag()),
|
373 |
+
|
374 |
+
("RemovePhoneLinkEmail",RemovePhoneLinkEmail()),
|
375 |
+
("RemoveStopWordsPunctuation",RemoveStopWordsPunctuation()),
|
376 |
+
|
377 |
+
("LemmatizeText",LemmatizeText()),
|
378 |
+
|
379 |
+
("AddLengthFlag",AddLengthFlag()),
|
380 |
+
|
381 |
+
|
382 |
+
])
|
383 |
+
model = tf.keras.models.load_model('spam-model.h5', custom_objects={'KerasLayer':hub.KerasLayer})
|
384 |
+
|
385 |
+
def precidt(msg):
|
386 |
+
if type(msg) is str:
|
387 |
+
df = pd.DataFrame([msg],columns=["Comment"])
|
388 |
+
elif type(msg) is list:
|
389 |
+
df = pd.DataFrame(msg,columns=["Comment"])
|
390 |
+
else:
|
391 |
+
return []
|
392 |
+
|
393 |
+
df = pipe.transform(df)
|
394 |
+
table = df
|
395 |
+
df = {
|
396 |
+
"Comment": tf.convert_to_tensor(df["Comment"],dtype=tf.string),
|
397 |
+
"Length": tf.convert_to_tensor(df["length"], dtype=tf.float32),
|
398 |
+
"Currency": tf.convert_to_tensor(df["currency"], dtype=tf.float32),
|
399 |
+
"Spam Words": tf.convert_to_tensor(df["spam_word"], dtype=tf.float32),
|
400 |
+
"Emoji": tf.convert_to_tensor(df["emoji"], dtype=tf.float32),
|
401 |
+
"Contain": tf.convert_to_tensor(df["contain"], dtype=tf.float32),
|
402 |
+
"Email": tf.convert_to_tensor(df["email"], dtype=tf.float32),
|
403 |
+
"Phone": tf.convert_to_tensor(df["phone"], dtype=tf.float32)
|
404 |
+
}
|
405 |
+
return [ i for i in model.predict(df).reshape(-1,) ],table
|
406 |
+
|
407 |
+
|
408 |
+
|
409 |
+
app = Flask(__name__,template_folder="templates")
|
410 |
+
|
411 |
+
@app.route("/")
|
412 |
+
def hello():
|
413 |
+
return render_template('index.html')
|
414 |
+
|
415 |
+
|
416 |
+
@app.route("/api/data", methods=["POST"])
|
417 |
+
def main():
|
418 |
+
data = request.get_json()['text']
|
419 |
+
|
420 |
+
value = precidt(data)[0]
|
421 |
+
|
422 |
+
if (value > 85)
|
423 |
+
score = "Poor"
|
424 |
+
|
425 |
+
elif (value >50)
|
426 |
+
score = "Okay"
|
427 |
+
|
428 |
+
else
|
429 |
+
score = "Great"
|
430 |
+
|
431 |
+
return {"value": "{:.2f} % Spam".format(value) , "score" : "<span class='text-poor'>{score}</span>"}
|
432 |
+
|
433 |
+
|
434 |
+
app.run()
|
435 |
+
|