enesmanan's picture
add deploy files
e1ab149 verified
raw
history blame
5.79 kB
import os
import gradio as gr
import torch
import torch.nn.functional as F
import numpy as np
from PIL import Image
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
from models.model import EfficientNetModel, CNNModel
class AnimalClassifierApp:
def __init__(self):
"""Initialize the application."""
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.labels = ["bird", "cat", "dog", "horse"]
# Image preprocessing
self.transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
)
])
# Load models
self.models = self.load_models()
if not self.models:
print("Warning: No models found in checkpoints directory!")
def load_models(self):
"""Load both trained models."""
models = {}
# Load EfficientNet
try:
efficientnet = EfficientNetModel(num_classes=len(self.labels))
efficientnet_path = os.path.join("checkpoints", "efficientnet", "efficientnet_best_model.pth")
if os.path.exists(efficientnet_path):
checkpoint = torch.load(efficientnet_path, map_location=self.device, weights_only=True)
state_dict = checkpoint.get('model_state_dict', checkpoint)
efficientnet.load_state_dict(state_dict, strict=False)
efficientnet.eval()
models['EfficientNet'] = efficientnet
print("Successfully loaded EfficientNet model")
except Exception as e:
print(f"Error loading EfficientNet model: {str(e)}")
# Load CNN
try:
cnn = CNNModel(num_classes=len(self.labels))
cnn_path = os.path.join("checkpoints", "cnn", "cnn_best_model.pth")
if os.path.exists(cnn_path):
checkpoint = torch.load(cnn_path, map_location=self.device, weights_only=True)
state_dict = checkpoint.get('model_state_dict', checkpoint)
cnn.load_state_dict(state_dict, strict=False)
cnn.eval()
models['CNN'] = cnn
print("Successfully loaded CNN model")
except Exception as e:
print(f"Error loading CNN model: {str(e)}")
return models
def predict(self, image: Image.Image):
"""Make predictions with both models and create comparison visualizations."""
if not self.models:
return "No trained models found. Please train the models first."
# Preprocess image
img_tensor = self.transform(image).unsqueeze(0).to(self.device)
# Get predictions from both models
results = {}
probabilities = {}
for model_name, model in self.models.items():
with torch.no_grad():
output = model(img_tensor)
probs = F.softmax(output, dim=1).squeeze().cpu().numpy()
probabilities[model_name] = probs
# Get top prediction
pred_idx = np.argmax(probs)
pred_label = self.labels[pred_idx]
pred_prob = probs[pred_idx]
results[model_name] = (pred_label, pred_prob)
# Create comparison plot
fig = plt.figure(figsize=(12, 5))
# Plot for EfficientNet
if 'EfficientNet' in probabilities:
plt.subplot(1, 2, 1)
plt.bar(self.labels, probabilities['EfficientNet'], color='skyblue')
plt.title('EfficientNet Predictions')
plt.ylim(0, 1)
plt.xticks(rotation=45)
plt.ylabel('Probability')
# Plot for CNN
if 'CNN' in probabilities:
plt.subplot(1, 2, 2)
plt.bar(self.labels, probabilities['CNN'], color='lightcoral')
plt.title('CNN Predictions')
plt.ylim(0, 1)
plt.xticks(rotation=45)
plt.ylabel('Probability')
plt.tight_layout()
# Create results text
text_results = "Model Predictions:\n\n"
for model_name, (label, prob) in results.items():
text_results += f"{model_name}:\n"
text_results += f"Top prediction: {label} ({prob:.2%})\n"
text_results += "All probabilities:\n"
for label, prob in zip(self.labels, probabilities[model_name]):
text_results += f" {label}: {prob:.2%}\n"
text_results += "\n"
return [
fig, # Probability plots
text_results # Detailed text results
]
def create_interface(self):
"""Create Gradio interface."""
return gr.Interface(
fn=self.predict,
inputs=gr.Image(type="pil"),
outputs=[
gr.Plot(label="Prediction Probabilities"),
gr.Textbox(label="Detailed Results", lines=10)
],
title="Animal Classifier - Model Comparison",
description="Upload an image of an animal to see predictions from both EfficientNet and CNN models."
)
def main():
"""Run the web application."""
app = AnimalClassifierApp()
interface = app.create_interface()
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=True
)
if __name__ == "__main__":
main()