fix gradio
Browse files- app.py +190 -142
- requirements.txt +13 -19
- scripts/data_prp_eda.py +491 -357
- scripts/review_summarizer.py +323 -291
- scripts/review_summarizer_trendyol_llama.py +411 -0
- scripts/sentiment_bert_model.py +203 -166
app.py
CHANGED
@@ -1,156 +1,204 @@
|
|
1 |
-
import
|
|
|
|
|
|
|
2 |
import pandas as pd
|
3 |
-
from scrape.trendyol_scraper import scrape_reviews
|
4 |
-
from scripts.review_summarizer import ReviewAnalyzer
|
5 |
import plotly.express as px
|
6 |
-
import
|
7 |
-
import
|
8 |
-
import
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
try:
|
21 |
-
#
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
#
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
|
|
|
34 |
|
35 |
-
#
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
logger.error(f"Chrome kurulumunda hata: {str(e)}", exc_info=True)
|
43 |
-
raise
|
44 |
-
|
45 |
-
class ReviewAnalysisApp:
|
46 |
-
def __init__(self):
|
47 |
-
try:
|
48 |
-
logger.info("Chrome kurulumu başlatılıyor...")
|
49 |
-
setup_chrome() # Uygulama başlatılırken Chrome'u kur
|
50 |
-
|
51 |
-
logger.info("ReviewAnalyzer başlatılıyor...")
|
52 |
-
self.analyzer = ReviewAnalyzer()
|
53 |
-
logger.info("ReviewAnalyzer başarıyla başlatıldı")
|
54 |
-
|
55 |
-
except Exception as e:
|
56 |
-
logger.error(f"ReviewAnalyzer başlatılırken hata: {str(e)}", exc_info=True) # Tam hata stack'ini göster
|
57 |
-
self.analyzer = None
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
if analyzed_df.empty:
|
79 |
-
return "Sentiment analizi yapılamadı.", None, None, None
|
80 |
-
|
81 |
-
logger.info("Özet oluşturuluyor...")
|
82 |
-
summary = self.analyzer.generate_summary(analyzed_df)
|
83 |
-
|
84 |
-
logger.info("Grafikler oluşturuluyor...")
|
85 |
-
fig1 = self.create_sentiment_distribution(analyzed_df)
|
86 |
-
fig2 = self.create_rating_distribution(analyzed_df)
|
87 |
-
fig3 = self.create_sentiment_by_rating(analyzed_df)
|
88 |
-
|
89 |
-
return summary, fig1, fig2, fig3
|
90 |
-
|
91 |
-
except Exception as e:
|
92 |
-
error_msg = f"Analiz sırasında hata oluştu: {str(e)}"
|
93 |
-
logger.error(error_msg)
|
94 |
-
return error_msg, None, None, None
|
95 |
-
|
96 |
-
def create_sentiment_distribution(self, df):
|
97 |
-
fig = px.pie(df,
|
98 |
-
names='sentiment_label',
|
99 |
-
title='Duygu Analizi Dağılımı')
|
100 |
-
return fig
|
101 |
|
102 |
-
|
103 |
-
fig = px.bar(df['Yıldız Sayısı'].value_counts().sort_index(),
|
104 |
-
title='Yıldız Dağılımı')
|
105 |
-
fig.update_layout(xaxis_title='Yıldız Sayısı',
|
106 |
-
yaxis_title='Yorum Sayısı')
|
107 |
-
return fig
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
fig.update_layout(xaxis_title='Yıldız Sayısı',
|
114 |
-
yaxis_title='Ortalama Sentiment Skoru')
|
115 |
-
return fig
|
116 |
-
|
117 |
-
def create_interface():
|
118 |
-
app = ReviewAnalysisApp()
|
119 |
|
120 |
-
with gr.
|
121 |
-
gr.
|
122 |
-
|
123 |
-
|
124 |
-
url_input = gr.Textbox(
|
125 |
-
label="Trendyol Ürün Yorumları URL'si",
|
126 |
-
placeholder="https://www.trendyol.com/..."
|
127 |
-
)
|
128 |
-
|
129 |
-
analyze_btn = gr.Button("Analiz Et")
|
130 |
-
|
131 |
-
with gr.Row():
|
132 |
-
with gr.Column(scale=1):
|
133 |
-
summary_output = gr.Textbox(
|
134 |
-
label="Özet",
|
135 |
-
lines=10
|
136 |
-
)
|
137 |
-
|
138 |
-
with gr.Column(scale=2):
|
139 |
-
with gr.Tab("Duygu Analizi"):
|
140 |
-
sentiment_dist = gr.Plot()
|
141 |
-
with gr.Tab("Yıldız Dağılımı"):
|
142 |
-
rating_dist = gr.Plot()
|
143 |
-
with gr.Tab("Sentiment-Yıldız İlişkisi"):
|
144 |
-
sentiment_rating = gr.Plot()
|
145 |
-
|
146 |
-
analyze_btn.click(
|
147 |
-
fn=app.analyze_url,
|
148 |
-
inputs=[url_input],
|
149 |
-
outputs=[summary_output, sentiment_dist, rating_dist, sentiment_rating]
|
150 |
)
|
151 |
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
if __name__ == "__main__":
|
155 |
-
|
156 |
-
interface.launch()
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import requests
|
4 |
+
import re
|
5 |
import pandas as pd
|
|
|
|
|
6 |
import plotly.express as px
|
7 |
+
import gradio as gr
|
8 |
+
from dotenv import load_dotenv
|
9 |
+
from scripts.review_summarizer import analyze_reviews
|
10 |
+
|
11 |
+
# Load environment variables
|
12 |
+
load_dotenv()
|
13 |
+
GEMINI_API_KEY = os.getenv('GEMINI_API_KEY')
|
14 |
+
|
15 |
+
if not os.path.exists("data"):
|
16 |
+
os.makedirs("data")
|
17 |
+
|
18 |
+
def create_sentiment_plot(df):
|
19 |
+
"""Creates a pie chart visualization for sentiment distribution"""
|
20 |
+
sentiment_counts = df["sentiment_label"].value_counts()
|
21 |
+
fig = px.pie(
|
22 |
+
values=sentiment_counts.values,
|
23 |
+
names=sentiment_counts.index,
|
24 |
+
title="Duygu Analizi Dağılımı",
|
25 |
+
color_discrete_map={
|
26 |
+
"Pozitif": "#2ecc71",
|
27 |
+
"Nötr": "#95a5a6",
|
28 |
+
"Negatif": "#e74c3c",
|
29 |
+
},
|
30 |
+
)
|
31 |
+
return fig
|
32 |
+
|
33 |
+
def create_star_plot(df):
|
34 |
+
"""Creates a bar chart visualization for star rating distribution"""
|
35 |
+
star_counts = df["Yıldız Sayısı"].value_counts().sort_index()
|
36 |
+
fig = px.bar(
|
37 |
+
x=star_counts.index,
|
38 |
+
y=star_counts.values,
|
39 |
+
title="Yıldız Dağılımı",
|
40 |
+
labels={"x": "Yıldız Sayısı", "y": "Yorum Sayısı"},
|
41 |
+
color_discrete_sequence=["#f39c12"],
|
42 |
+
)
|
43 |
+
fig.update_layout(
|
44 |
+
xaxis=dict(
|
45 |
+
tickmode="array",
|
46 |
+
ticktext=["⭐", "⭐⭐", "⭐⭐⭐", "⭐⭐⭐⭐", "⭐⭐⭐⭐⭐"],
|
47 |
+
)
|
48 |
+
)
|
49 |
+
return fig
|
50 |
+
|
51 |
+
def scrape_product_comments_v2(url):
|
52 |
+
headers = {
|
53 |
+
"accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7",
|
54 |
+
"accept-language": "en-US,en;q=0.9",
|
55 |
+
"cache-control": "max-age=0",
|
56 |
+
"upgrade-insecure-requests": "1",
|
57 |
+
"user-agent": "Mozilla/5.0 (iPad; CPU OS 14_6_1 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) FxiOS/129.0 Mobile/15E148 Safari/605.1.15"
|
58 |
+
}
|
59 |
+
|
60 |
+
# Extract product_id using regex
|
61 |
+
match = re.search(r"-p-(\d+)", url)
|
62 |
+
if not match:
|
63 |
+
raise ValueError("Product ID not found in URL")
|
64 |
+
|
65 |
+
product_id = match.group(1)
|
66 |
+
api_url = f"https://apigw.trendyol.com/discovery-web-websfxsocialreviewrating-santral/product-reviews-detailed?contentId={product_id}&page=1&order=DESC&orderBy=Score&channelId=1"
|
67 |
+
|
68 |
+
def fetch_reviews(api_url, headers):
|
69 |
+
all_reviews = []
|
70 |
+
response = requests.get(api_url, headers=headers)
|
71 |
+
if response.status_code != 200:
|
72 |
+
raise ConnectionError(f"Initial request failed: {response.status_code}")
|
73 |
+
|
74 |
+
data = response.json()
|
75 |
+
total_pages = data["result"]["productReviews"]["totalPages"]
|
76 |
+
all_reviews.extend(data["result"]["productReviews"]["content"])
|
77 |
+
|
78 |
+
for page in range(2, total_pages + 1):
|
79 |
+
paginated_url = api_url.replace("page=1", f"page={page}")
|
80 |
+
response = requests.get(paginated_url, headers=headers)
|
81 |
+
if response.status_code == 200:
|
82 |
+
page_data = response.json()
|
83 |
+
all_reviews.extend(page_data["result"]["productReviews"]["content"])
|
84 |
+
else:
|
85 |
+
print(f"Failed to fetch page {page}: {response.status_code}")
|
86 |
+
|
87 |
+
return all_reviews
|
88 |
+
|
89 |
+
reviews = fetch_reviews(api_url, headers)
|
90 |
+
reviews_df = pd.DataFrame(reviews)
|
91 |
+
reviews_df = reviews_df.rename(columns={
|
92 |
+
"id": "Kullanıcı_id",
|
93 |
+
"userFullName": "Kullanıcı Adı",
|
94 |
+
"comment": "Yorum",
|
95 |
+
"lastModifiedDate": "Tarih",
|
96 |
+
"rate": "Yıldız Sayısı"
|
97 |
+
})
|
98 |
+
reviews_df = reviews_df[["Kullanıcı_id", "Kullanıcı Adı", "Yorum", "Tarih", "Yıldız Sayısı"]]
|
99 |
+
return reviews_df
|
100 |
+
|
101 |
+
def analyze_product(url, progress=gr.Progress()):
|
102 |
try:
|
103 |
+
# Fetch reviews
|
104 |
+
progress(0.1, desc="Yorumlar çekiliyor...")
|
105 |
+
df = scrape_product_comments_v2(url)
|
106 |
+
|
107 |
+
if df is None or len(df) == 0:
|
108 |
+
return None, None, None, None, None, None, None, "Yorumlar çekilemedi. URL'yi kontrol edin."
|
109 |
+
|
110 |
+
# Save to CSV
|
111 |
+
data_path = os.path.join("data", "product_comments.csv")
|
112 |
+
df.to_csv(data_path, index=False, encoding="utf-8-sig")
|
113 |
+
|
114 |
+
# Analyze reviews
|
115 |
+
progress(0.4, desc="Yorumlar analiz ediliyor...")
|
116 |
+
summary, analyzed_df = analyze_reviews(data_path, GEMINI_API_KEY)
|
117 |
+
|
118 |
+
progress(0.7, desc="Sonuçlar hazırlanıyor...")
|
119 |
|
120 |
+
# Calculate metrics
|
121 |
+
total_reviews = len(df)
|
122 |
+
total_analyzed = len(analyzed_df)
|
123 |
+
avg_rating = f"{analyzed_df['Yıldız Sayısı'].mean():.1f}⭐"
|
124 |
+
positive_ratio = len(analyzed_df[analyzed_df["sentiment_label"] == "Pozitif"]) / len(analyzed_df) * 100
|
125 |
+
positive_ratio_str = f"%{positive_ratio:.1f}"
|
126 |
|
127 |
+
# Create plots
|
128 |
+
sentiment_plot = create_sentiment_plot(analyzed_df)
|
129 |
+
star_plot = create_star_plot(analyzed_df)
|
130 |
|
131 |
+
# Create info message for removed reviews
|
132 |
+
removed_reviews = total_reviews - total_analyzed
|
133 |
+
info_message = ""
|
134 |
+
if removed_reviews > 0:
|
135 |
+
info_message = f"Not: Toplam {removed_reviews} adet kargo, teslimat ve satıcı ile ilgili yorum analiz dışı bırakılmıştır."
|
136 |
+
|
137 |
+
progress(1.0, desc="Analiz tamamlandı!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
+
return (
|
140 |
+
str(total_reviews),
|
141 |
+
str(total_analyzed),
|
142 |
+
avg_rating,
|
143 |
+
positive_ratio_str,
|
144 |
+
sentiment_plot,
|
145 |
+
star_plot,
|
146 |
+
summary,
|
147 |
+
info_message
|
148 |
+
)
|
149 |
+
|
150 |
+
except Exception as e:
|
151 |
+
return None, None, None, None, None, None, None, f"Bir hata oluştu: {str(e)}"
|
152 |
+
|
153 |
+
# Create Gradio interface
|
154 |
+
with gr.Blocks(title="Trendyol Yorum Analizi") as demo:
|
155 |
+
gr.Markdown("""
|
156 |
+
# Trendyol Yorum Analizi
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
+
Bu uygulama, Trendyol ürün sayfasındaki yorumları analiz eder ve özetler.
|
|
|
|
|
|
|
|
|
|
|
159 |
|
160 |
+
Kullanım:
|
161 |
+
1. Trendyol ürün yorumlar sayfasının URL'sini girin
|
162 |
+
2. 'Analiz Et' butonuna tıklayın
|
163 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
|
165 |
+
with gr.Row():
|
166 |
+
url_input = gr.Textbox(
|
167 |
+
label="Trendyol Ürün Yorumları URL",
|
168 |
+
placeholder="ürünün linki"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
)
|
170 |
|
171 |
+
analyze_btn = gr.Button("Analiz Et")
|
172 |
+
|
173 |
+
with gr.Row():
|
174 |
+
total_reviews = gr.Textbox(label="Toplam Yorum")
|
175 |
+
total_analyzed = gr.Textbox(label="Ürün Değerlendirme Sayısı")
|
176 |
+
avg_rating = gr.Textbox(label="Ortalama Puan")
|
177 |
+
positive_ratio = gr.Textbox(label="Olumlu Yorum Oranı")
|
178 |
+
|
179 |
+
info_message = gr.Markdown()
|
180 |
+
|
181 |
+
with gr.Row():
|
182 |
+
sentiment_plot = gr.Plot()
|
183 |
+
star_plot = gr.Plot()
|
184 |
+
|
185 |
+
summary = gr.Markdown(label="📝 Genel Değerlendirme")
|
186 |
+
error_message = gr.Markdown()
|
187 |
+
|
188 |
+
analyze_btn.click(
|
189 |
+
analyze_product,
|
190 |
+
inputs=[url_input],
|
191 |
+
outputs=[
|
192 |
+
total_reviews,
|
193 |
+
total_analyzed,
|
194 |
+
avg_rating,
|
195 |
+
positive_ratio,
|
196 |
+
sentiment_plot,
|
197 |
+
star_plot,
|
198 |
+
summary,
|
199 |
+
error_message
|
200 |
+
]
|
201 |
+
)
|
202 |
|
203 |
if __name__ == "__main__":
|
204 |
+
demo.launch()
|
|
requirements.txt
CHANGED
@@ -1,19 +1,13 @@
|
|
1 |
-
pandas
|
2 |
-
numpy==1.
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
tqdm
|
13 |
-
regex
|
14 |
-
scikit-learn
|
15 |
-
google-generativeai
|
16 |
-
python-dotenv
|
17 |
-
requests
|
18 |
-
sentencepiece
|
19 |
-
protobuf
|
|
|
1 |
+
pandas==2.2.3
|
2 |
+
numpy==1.26.4
|
3 |
+
torch==2.5.1
|
4 |
+
transformers==4.47.0
|
5 |
+
nltk==3.8.1
|
6 |
+
requests==2.32.3
|
7 |
+
google-generativeai==0.8.3
|
8 |
+
selenium==4.27.1
|
9 |
+
streamlit==1.36.0
|
10 |
+
plotly==5.18.0
|
11 |
+
python-dotenv==1.0.1
|
12 |
+
tqdm==4.67.1
|
13 |
+
regex
|
|
|
|
|
|
|
|
|
|
|
|
scripts/data_prp_eda.py
CHANGED
@@ -1,357 +1,491 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
import
|
4 |
-
|
5 |
-
from
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
import
|
10 |
-
|
11 |
-
import
|
12 |
-
|
13 |
-
from nltk.
|
14 |
-
from nltk.
|
15 |
-
import
|
16 |
-
import
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
self.
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
self.
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
}
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
plt.
|
296 |
-
|
297 |
-
plt.
|
298 |
-
plt.
|
299 |
-
plt.
|
300 |
-
plt.
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
plt.figure(figsize=(10, 6))
|
307 |
-
|
308 |
-
plt.title(
|
309 |
-
plt.xlabel(
|
310 |
-
plt.ylabel(
|
311 |
-
plt.savefig(
|
312 |
-
plt.close()
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
self.
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import warnings
|
4 |
+
from collections import Counter
|
5 |
+
from datetime import datetime
|
6 |
+
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import nltk
|
9 |
+
import numpy as np
|
10 |
+
import pandas as pd
|
11 |
+
import requests
|
12 |
+
import seaborn as sns
|
13 |
+
from nltk.corpus import stopwords
|
14 |
+
from nltk.tokenize import word_tokenize
|
15 |
+
from nltk.util import ngrams
|
16 |
+
from textblob import TextBlob
|
17 |
+
from wordcloud import WordCloud
|
18 |
+
|
19 |
+
warnings.filterwarnings("ignore")
|
20 |
+
plt.style.use("seaborn")
|
21 |
+
|
22 |
+
nltk.download("stopwords")
|
23 |
+
nltk.download("punkt")
|
24 |
+
|
25 |
+
|
26 |
+
class ReviewAnalyzer:
|
27 |
+
def __init__(self, file_path):
|
28 |
+
self.df = pd.read_csv(file_path)
|
29 |
+
self.turkish_stopwords = self.get_turkish_stopwords()
|
30 |
+
|
31 |
+
# Lojistik ve satıcı ile ilgili kelimeleri genişletilmiş liste ile tanımla
|
32 |
+
self.logistics_seller_words = {
|
33 |
+
# Kargo ve teslimat ile ilgili
|
34 |
+
"kargo",
|
35 |
+
"kargocu",
|
36 |
+
"paket",
|
37 |
+
"paketleme",
|
38 |
+
"teslimat",
|
39 |
+
"teslim",
|
40 |
+
"gönderi",
|
41 |
+
"gönderim",
|
42 |
+
"ulaştı",
|
43 |
+
"ulaşım",
|
44 |
+
"geldi",
|
45 |
+
"kurye",
|
46 |
+
"dağıtım",
|
47 |
+
"hasarlı",
|
48 |
+
"hasar",
|
49 |
+
"kutu",
|
50 |
+
"ambalaj",
|
51 |
+
"zamanında",
|
52 |
+
"geç",
|
53 |
+
"hızlı",
|
54 |
+
"yavaş",
|
55 |
+
"günde",
|
56 |
+
"saatte",
|
57 |
+
# Satıcı ve mağaza ile ilgili
|
58 |
+
"satıcı",
|
59 |
+
"mağaza",
|
60 |
+
"sipariş",
|
61 |
+
"trendyol",
|
62 |
+
"tedarik",
|
63 |
+
"stok",
|
64 |
+
"garanti",
|
65 |
+
"fatura",
|
66 |
+
"iade",
|
67 |
+
"geri",
|
68 |
+
"müşteri",
|
69 |
+
"hizmet",
|
70 |
+
"destek",
|
71 |
+
"iletişim",
|
72 |
+
"şikayet",
|
73 |
+
"sorun",
|
74 |
+
"çözüm",
|
75 |
+
"hediye",
|
76 |
+
# Fiyat ve ödeme ile ilgili
|
77 |
+
"fiyat",
|
78 |
+
"ücret",
|
79 |
+
"para",
|
80 |
+
"bedava",
|
81 |
+
"ücretsiz",
|
82 |
+
"indirim",
|
83 |
+
"kampanya",
|
84 |
+
"taksit",
|
85 |
+
"ödeme",
|
86 |
+
"bütçe",
|
87 |
+
"hesap",
|
88 |
+
"kur",
|
89 |
+
# Zaman ile ilgili teslimat kelimeleri
|
90 |
+
"bugün",
|
91 |
+
"yarın",
|
92 |
+
"dün",
|
93 |
+
"hafta",
|
94 |
+
"gün",
|
95 |
+
"saat",
|
96 |
+
"süre",
|
97 |
+
"bekleme",
|
98 |
+
"gecikme",
|
99 |
+
"erken",
|
100 |
+
"geç",
|
101 |
+
}
|
102 |
+
|
103 |
+
# Sentiment analizi için kelimeler
|
104 |
+
self.positive_words = {
|
105 |
+
"güzel",
|
106 |
+
"harika",
|
107 |
+
"mükemmel",
|
108 |
+
"süper",
|
109 |
+
"iyi",
|
110 |
+
"muhteşem",
|
111 |
+
"teşekkür",
|
112 |
+
"memnun",
|
113 |
+
"başarılı",
|
114 |
+
"kaliteli",
|
115 |
+
"kusursuz",
|
116 |
+
"özgün",
|
117 |
+
"şahane",
|
118 |
+
"enfes",
|
119 |
+
"ideal",
|
120 |
+
}
|
121 |
+
|
122 |
+
self.negative_words = {
|
123 |
+
"kötü",
|
124 |
+
"berbat",
|
125 |
+
"rezalet",
|
126 |
+
"yetersiz",
|
127 |
+
"başarısız",
|
128 |
+
"vasat",
|
129 |
+
"korkunç",
|
130 |
+
"düşük",
|
131 |
+
"zayıf",
|
132 |
+
"çöp",
|
133 |
+
"pişman",
|
134 |
+
"kırık",
|
135 |
+
"bozuk",
|
136 |
+
}
|
137 |
+
|
138 |
+
# Türkçe-İngilizce ay çevirisi
|
139 |
+
self.month_map = {
|
140 |
+
"Ocak": "January",
|
141 |
+
"Şubat": "February",
|
142 |
+
"Mart": "March",
|
143 |
+
"Nisan": "April",
|
144 |
+
"Mayıs": "May",
|
145 |
+
"Haziran": "June",
|
146 |
+
"Temmuz": "July",
|
147 |
+
"Ağustos": "August",
|
148 |
+
"Eylül": "September",
|
149 |
+
"Ekim": "October",
|
150 |
+
"Kasım": "November",
|
151 |
+
"Aralık": "December",
|
152 |
+
}
|
153 |
+
|
154 |
+
def get_turkish_stopwords(self):
|
155 |
+
"""Türkçe stop words listesini oluştur"""
|
156 |
+
turkish_stops = set(stopwords.words("turkish"))
|
157 |
+
|
158 |
+
github_url = "https://raw.githubusercontent.com/sgsinclair/trombone/master/src/main/resources/org/voyanttools/trombone/keywords/stop.tr.turkish-lucene.txt"
|
159 |
+
try:
|
160 |
+
response = requests.get(github_url)
|
161 |
+
if response.status_code == 200:
|
162 |
+
github_stops = set(
|
163 |
+
word.strip() for word in response.text.split("\n") if word.strip()
|
164 |
+
)
|
165 |
+
turkish_stops.update(github_stops)
|
166 |
+
except Exception as e:
|
167 |
+
print(f"GitHub'dan stop words çekilirken hata oluştu: {e}")
|
168 |
+
|
169 |
+
custom_stops = {
|
170 |
+
"bir",
|
171 |
+
"ve",
|
172 |
+
"çok",
|
173 |
+
"bu",
|
174 |
+
"de",
|
175 |
+
"da",
|
176 |
+
"için",
|
177 |
+
"ile",
|
178 |
+
"ben",
|
179 |
+
"sen",
|
180 |
+
"o",
|
181 |
+
"biz",
|
182 |
+
"siz",
|
183 |
+
"onlar",
|
184 |
+
"bu",
|
185 |
+
"şu",
|
186 |
+
"ama",
|
187 |
+
"fakat",
|
188 |
+
"ancak",
|
189 |
+
"lakin",
|
190 |
+
"ki",
|
191 |
+
"dahi",
|
192 |
+
"mi",
|
193 |
+
"mı",
|
194 |
+
"mu",
|
195 |
+
"mü",
|
196 |
+
}
|
197 |
+
turkish_stops.update(custom_stops)
|
198 |
+
|
199 |
+
return turkish_stops
|
200 |
+
|
201 |
+
def filter_product_reviews(self):
|
202 |
+
"""Salt ürün yorumlarını filtrele"""
|
203 |
+
|
204 |
+
def is_pure_product_review(text):
|
205 |
+
if not isinstance(text, str):
|
206 |
+
return False
|
207 |
+
|
208 |
+
text_lower = text.lower()
|
209 |
+
return not any(word in text_lower for word in self.logistics_seller_words)
|
210 |
+
|
211 |
+
# Filtrelenmiş DataFrame
|
212 |
+
original_count = len(self.df)
|
213 |
+
self.df = self.df[self.df["Yorum"].apply(is_pure_product_review)]
|
214 |
+
filtered_count = len(self.df)
|
215 |
+
|
216 |
+
print(f"\nFiltreleme İstatistikleri:")
|
217 |
+
print(f"Orijinal yorum sayısı: {original_count}")
|
218 |
+
print(f"Salt ürün yorumu sayısı: {filtered_count}")
|
219 |
+
print(f"Çıkarılan yorum sayısı: {original_count - filtered_count}")
|
220 |
+
print(
|
221 |
+
f"Filtreleme oranı: {((original_count - filtered_count) / original_count * 100):.2f}%"
|
222 |
+
)
|
223 |
+
|
224 |
+
print("\nÖrnek Salt Ürün Yorumları:")
|
225 |
+
sample_reviews = self.df["Yorum"].sample(min(3, len(self.df)))
|
226 |
+
for idx, review in enumerate(sample_reviews, 1):
|
227 |
+
print(f"{idx}. {review[:100]}...")
|
228 |
+
|
229 |
+
def convert_turkish_date(self, date_str):
|
230 |
+
"""Türkçe tarihleri İngilizce'ye çevir"""
|
231 |
+
try:
|
232 |
+
day, month, year = date_str.split()
|
233 |
+
english_month = self.month_map[month]
|
234 |
+
return f"{day} {english_month} {year}"
|
235 |
+
except:
|
236 |
+
return None
|
237 |
+
|
238 |
+
def preprocess_text(self, text):
|
239 |
+
"""Metin ön işleme"""
|
240 |
+
if isinstance(text, str):
|
241 |
+
text = text.lower()
|
242 |
+
text = re.sub(r"[^\w\s]", "", text)
|
243 |
+
text = re.sub(r"\d+", "", text)
|
244 |
+
text = re.sub(r"\s+", " ", text).strip()
|
245 |
+
return text
|
246 |
+
return ""
|
247 |
+
|
248 |
+
def analyze_timestamps(self):
|
249 |
+
"""Zaman bazlı analizler"""
|
250 |
+
# Tarihleri dönüştür
|
251 |
+
self.df["Tarih"] = self.df["Tarih"].apply(self.convert_turkish_date)
|
252 |
+
self.df["Tarih"] = pd.to_datetime(self.df["Tarih"], format="%d %B %Y")
|
253 |
+
|
254 |
+
# Günlük dağılım
|
255 |
+
plt.figure(figsize=(12, 6))
|
256 |
+
plt.hist(self.df["Tarih"], bins=20, edgecolor="black")
|
257 |
+
plt.title("Yorumların Zaman İçindeki Dağılımı")
|
258 |
+
plt.xlabel("Tarih")
|
259 |
+
plt.ylabel("Yorum Sayısı")
|
260 |
+
plt.xticks(rotation=45)
|
261 |
+
plt.tight_layout()
|
262 |
+
plt.savefig("images/yorum_zaman_dagilimi.png")
|
263 |
+
plt.close()
|
264 |
+
|
265 |
+
# Aylık dağılım
|
266 |
+
monthly_reviews = self.df.groupby(self.df["Tarih"].dt.to_period("M")).size()
|
267 |
+
plt.figure(figsize=(12, 6))
|
268 |
+
monthly_reviews.plot(kind="bar")
|
269 |
+
plt.title("Aylık Yorum Dağılımı")
|
270 |
+
plt.xlabel("Ay")
|
271 |
+
plt.ylabel("Yorum Sayısı")
|
272 |
+
plt.xticks(rotation=45)
|
273 |
+
plt.tight_layout()
|
274 |
+
plt.savefig("images/aylik_yorum_dagilimi.png")
|
275 |
+
plt.close()
|
276 |
+
|
277 |
+
# Mevsimsel analiz
|
278 |
+
self.df["Mevsim"] = self.df["Tarih"].dt.month.map(
|
279 |
+
{
|
280 |
+
12: "Kış",
|
281 |
+
1: "Kış",
|
282 |
+
2: "Kış",
|
283 |
+
3: "İlkbahar",
|
284 |
+
4: "İlkbahar",
|
285 |
+
5: "İlkbahar",
|
286 |
+
6: "Yaz",
|
287 |
+
7: "Yaz",
|
288 |
+
8: "Yaz",
|
289 |
+
9: "Sonbahar",
|
290 |
+
10: "Sonbahar",
|
291 |
+
11: "Sonbahar",
|
292 |
+
}
|
293 |
+
)
|
294 |
+
seasonal_reviews = self.df.groupby("Mevsim").size()
|
295 |
+
plt.figure(figsize=(10, 6))
|
296 |
+
seasonal_reviews.plot(kind="bar")
|
297 |
+
plt.title("Mevsimsel Yorum Dağılımı")
|
298 |
+
plt.xlabel("Mevsim")
|
299 |
+
plt.ylabel("Yorum Sayısı")
|
300 |
+
plt.tight_layout()
|
301 |
+
plt.savefig("images/mevsimsel_dagilim.png")
|
302 |
+
plt.close()
|
303 |
+
|
304 |
+
def analyze_ratings(self):
|
305 |
+
"""Yıldız bazlı analizler"""
|
306 |
+
plt.figure(figsize=(10, 6))
|
307 |
+
sns.countplot(data=self.df, x="Yıldız Sayısı")
|
308 |
+
plt.title("Yıldız Dağılımı")
|
309 |
+
plt.xlabel("Yıldız Sayısı")
|
310 |
+
plt.ylabel("Yorum Sayısı")
|
311 |
+
plt.savefig("images/yildiz_dagilimi.png")
|
312 |
+
plt.close()
|
313 |
+
|
314 |
+
return {
|
315 |
+
"Ortalama Yıldız": self.df["Yıldız Sayısı"].mean(),
|
316 |
+
"Medyan Yıldız": self.df["Yıldız Sayısı"].median(),
|
317 |
+
"Mod Yıldız": self.df["Yıldız Sayısı"].mode()[0],
|
318 |
+
"Standart Sapma": self.df["Yıldız Sayısı"].std(),
|
319 |
+
}
|
320 |
+
|
321 |
+
def create_wordcloud(self):
|
322 |
+
"""Kelime bulutu oluştur"""
|
323 |
+
all_comments = " ".join(
|
324 |
+
[self.preprocess_text(str(comment)) for comment in self.df["Yorum"]]
|
325 |
+
)
|
326 |
+
|
327 |
+
words = word_tokenize(all_comments)
|
328 |
+
filtered_words = [word for word in words if word not in self.turkish_stopwords]
|
329 |
+
clean_text = " ".join(filtered_words)
|
330 |
+
|
331 |
+
wordcloud = WordCloud(
|
332 |
+
width=800,
|
333 |
+
height=400,
|
334 |
+
background_color="white",
|
335 |
+
max_words=100,
|
336 |
+
font_path="C:/Windows/Fonts/arial.ttf", # Windows varsayılan font
|
337 |
+
).generate(clean_text)
|
338 |
+
|
339 |
+
plt.figure(figsize=(15, 8))
|
340 |
+
plt.imshow(wordcloud, interpolation="bilinear")
|
341 |
+
plt.axis("off")
|
342 |
+
plt.savefig("images/wordcloud.png")
|
343 |
+
plt.close()
|
344 |
+
|
345 |
+
def analyze_ngrams(self, max_n=3, top_n=10):
|
346 |
+
"""N-gram analizi"""
|
347 |
+
all_texts = []
|
348 |
+
for comment in self.df["Yorum"]:
|
349 |
+
if isinstance(comment, str):
|
350 |
+
words = self.preprocess_text(comment).split()
|
351 |
+
filtered_words = [
|
352 |
+
word for word in words if word not in self.turkish_stopwords
|
353 |
+
]
|
354 |
+
all_texts.extend(filtered_words)
|
355 |
+
|
356 |
+
for n in range(1, max_n + 1):
|
357 |
+
print(f"\n{n}-gram Analizi:")
|
358 |
+
|
359 |
+
if n == 1:
|
360 |
+
ngrams_list = all_texts
|
361 |
+
else:
|
362 |
+
ngrams_list = list(ngrams(all_texts, n))
|
363 |
+
|
364 |
+
ngram_freq = Counter(ngrams_list).most_common(top_n)
|
365 |
+
|
366 |
+
if n == 1:
|
367 |
+
labels = [item[0] for item in ngram_freq]
|
368 |
+
else:
|
369 |
+
labels = [" ".join(item[0]) for item in ngram_freq]
|
370 |
+
|
371 |
+
values = [item[1] for item in ngram_freq]
|
372 |
+
|
373 |
+
plt.figure(figsize=(12, 6))
|
374 |
+
bars = plt.barh(range(len(values)), values)
|
375 |
+
plt.yticks(range(len(labels)), labels)
|
376 |
+
plt.title(f"En Sık Kullanılan {n}-gramlar")
|
377 |
+
plt.xlabel("Frekans")
|
378 |
+
|
379 |
+
for i, bar in enumerate(bars):
|
380 |
+
width = bar.get_width()
|
381 |
+
plt.text(
|
382 |
+
width,
|
383 |
+
bar.get_y() + bar.get_height() / 2,
|
384 |
+
f"{int(width)}",
|
385 |
+
ha="left",
|
386 |
+
va="center",
|
387 |
+
fontweight="bold",
|
388 |
+
)
|
389 |
+
|
390 |
+
plt.tight_layout()
|
391 |
+
plt.savefig(f"images/{n}gram_analizi.png")
|
392 |
+
plt.close()
|
393 |
+
|
394 |
+
print(f"\nEn sık kullanılan {n}-gramlar:")
|
395 |
+
for ngram, freq in ngram_freq:
|
396 |
+
if n == 1:
|
397 |
+
print(f"{ngram}: {freq}")
|
398 |
+
else:
|
399 |
+
print(f"{' '.join(ngram)}: {freq}")
|
400 |
+
|
401 |
+
def analyze_sentiment(self):
|
402 |
+
"""Duygu analizi"""
|
403 |
+
|
404 |
+
def count_sentiment_words(text):
|
405 |
+
if not isinstance(text, str):
|
406 |
+
return 0, 0
|
407 |
+
|
408 |
+
text_lower = text.lower()
|
409 |
+
words = text_lower.split()
|
410 |
+
positive_count = sum(1 for word in words if word in self.positive_words)
|
411 |
+
negative_count = sum(1 for word in words if word in self.negative_words)
|
412 |
+
return positive_count, negative_count
|
413 |
+
|
414 |
+
sentiment_counts = self.df["Yorum"].apply(count_sentiment_words)
|
415 |
+
self.df["Pozitif_Kelime_Sayisi"] = [count[0] for count in sentiment_counts]
|
416 |
+
self.df["Negatif_Kelime_Sayisi"] = [count[1] for count in sentiment_counts]
|
417 |
+
self.df["Sentiment_Skor"] = (
|
418 |
+
self.df["Pozitif_Kelime_Sayisi"] - self.df["Negatif_Kelime_Sayisi"]
|
419 |
+
)
|
420 |
+
|
421 |
+
plt.figure(figsize=(10, 6))
|
422 |
+
sns.boxplot(data=self.df, x="Yıldız Sayısı", y="Sentiment_Skor")
|
423 |
+
plt.title("Yıldız Sayısı ve Sentiment Skoru İlişkisi")
|
424 |
+
plt.savefig("images/sentiment_yildiz_iliskisi.png")
|
425 |
+
plt.close()
|
426 |
+
|
427 |
+
plt.figure(figsize=(10, 6))
|
428 |
+
plt.hist(self.df["Sentiment_Skor"], bins=20)
|
429 |
+
plt.title("Sentiment Skor Dağılımı")
|
430 |
+
plt.xlabel("Sentiment Skoru")
|
431 |
+
plt.ylabel("Yorum Sayısı")
|
432 |
+
plt.savefig("images/sentiment_dagilimi.png")
|
433 |
+
plt.close()
|
434 |
+
|
435 |
+
def analyze_comment_lengths(self):
|
436 |
+
"""Yorum uzunluğu analizi"""
|
437 |
+
self.df["Yorum_Uzunlugu"] = self.df["Yorum"].str.len()
|
438 |
+
|
439 |
+
plt.figure(figsize=(10, 6))
|
440 |
+
plt.hist(self.df["Yorum_Uzunlugu"].dropna(), bins=30)
|
441 |
+
plt.title("Yorum Uzunluğu Dağılımı")
|
442 |
+
plt.xlabel("Karakter Sayısı")
|
443 |
+
plt.ylabel("Yorum Sayısı")
|
444 |
+
plt.savefig("images/yorum_uzunluk_dagilimi.png")
|
445 |
+
plt.close()
|
446 |
+
|
447 |
+
plt.figure(figsize=(10, 6))
|
448 |
+
sns.boxplot(data=self.df, x="Yıldız Sayısı", y="Yorum_Uzunlugu")
|
449 |
+
plt.title("Yıldız Sayısı ve Yorum Uzunluğu İlişkisi")
|
450 |
+
plt.xlabel("Yıldız")
|
451 |
+
plt.ylabel("Yorum Uzunluğu (Karakter)")
|
452 |
+
plt.savefig("images/yildiz_uzunluk_iliskisi.png")
|
453 |
+
plt.close()
|
454 |
+
|
455 |
+
def run_analysis(self):
|
456 |
+
"""Ana analiz fonksiyonu"""
|
457 |
+
print("Analiz başlatılıyor...")
|
458 |
+
|
459 |
+
if not os.path.exists("images"):
|
460 |
+
os.makedirs("images")
|
461 |
+
|
462 |
+
print("\nÜrün odaklı yorum filtresi uygulanıyor...")
|
463 |
+
self.filter_product_reviews()
|
464 |
+
|
465 |
+
print("\n1. Yorum Uzunluğu Analizi")
|
466 |
+
self.analyze_comment_lengths()
|
467 |
+
|
468 |
+
print("\n2. Zaman Analizi")
|
469 |
+
self.analyze_timestamps()
|
470 |
+
|
471 |
+
print("\n3. Yıldız Analizi")
|
472 |
+
rating_stats = self.analyze_ratings()
|
473 |
+
print("\nYıldız İstatistikleri:")
|
474 |
+
for key, value in rating_stats.items():
|
475 |
+
print(f"{key}: {value:.2f}")
|
476 |
+
|
477 |
+
print("\n4. Kelime Bulutu Oluşturuluyor")
|
478 |
+
self.create_wordcloud()
|
479 |
+
|
480 |
+
print("\n5. N-gram Analizleri")
|
481 |
+
self.analyze_ngrams(max_n=3, top_n=10)
|
482 |
+
|
483 |
+
print("\n6. Duygu Analizi")
|
484 |
+
self.analyze_sentiment()
|
485 |
+
|
486 |
+
print("\nAnaliz tamamlandı! Tüm görseller 'images' klasörüne kaydedildi.")
|
487 |
+
|
488 |
+
|
489 |
+
if __name__ == "__main__":
|
490 |
+
analyzer = ReviewAnalyzer("data/macbook_product_comments_with_ratings.csv")
|
491 |
+
analyzer.run_analysis()
|
scripts/review_summarizer.py
CHANGED
@@ -1,291 +1,323 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
import
|
8 |
-
import
|
9 |
-
import
|
10 |
-
|
11 |
-
import
|
12 |
-
from nltk.tokenize import word_tokenize
|
13 |
-
import
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
print("\
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import warnings
|
4 |
+
from collections import Counter
|
5 |
+
|
6 |
+
import google.generativeai as genai
|
7 |
+
import nltk
|
8 |
+
import numpy as np
|
9 |
+
import pandas as pd
|
10 |
+
import requests
|
11 |
+
import torch
|
12 |
+
from nltk.tokenize import word_tokenize
|
13 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
14 |
+
|
15 |
+
warnings.filterwarnings("ignore")
|
16 |
+
|
17 |
+
nltk.download("stopwords", quiet=True)
|
18 |
+
nltk.download("punkt", quiet=True)
|
19 |
+
|
20 |
+
|
21 |
+
class ReviewAnalyzer:
|
22 |
+
def __init__(self, gemini_api_key):
|
23 |
+
self.turkish_stopwords = self.get_turkish_stopwords()
|
24 |
+
self.setup_sentiment_model()
|
25 |
+
self.setup_gemini_model(gemini_api_key)
|
26 |
+
|
27 |
+
self.logistics_seller_words = {
|
28 |
+
"kargo",
|
29 |
+
"kargocu",
|
30 |
+
"paket",
|
31 |
+
"paketleme",
|
32 |
+
"teslimat",
|
33 |
+
"teslim",
|
34 |
+
"gönderi",
|
35 |
+
"gönderim",
|
36 |
+
"ulaştı",
|
37 |
+
"ulaşım",
|
38 |
+
"geldi",
|
39 |
+
"kurye",
|
40 |
+
"dağıtım",
|
41 |
+
"hasarlı",
|
42 |
+
"hasar",
|
43 |
+
"kutu",
|
44 |
+
"ambalaj",
|
45 |
+
"zamanında",
|
46 |
+
"geç",
|
47 |
+
"hızlı",
|
48 |
+
"yavaş",
|
49 |
+
"günde",
|
50 |
+
"saatte",
|
51 |
+
"satıcı",
|
52 |
+
"mağaza",
|
53 |
+
"sipariş",
|
54 |
+
"trendyol",
|
55 |
+
"tedarik",
|
56 |
+
"stok",
|
57 |
+
"garanti",
|
58 |
+
"fatura",
|
59 |
+
"iade",
|
60 |
+
"geri",
|
61 |
+
"müşteri",
|
62 |
+
"hizmet",
|
63 |
+
"destek",
|
64 |
+
"iletişim",
|
65 |
+
"şikayet",
|
66 |
+
"sorun",
|
67 |
+
"çözüm",
|
68 |
+
"hediye",
|
69 |
+
"fiyat",
|
70 |
+
"ücret",
|
71 |
+
"para",
|
72 |
+
"bedava",
|
73 |
+
"ücretsiz",
|
74 |
+
"indirim",
|
75 |
+
"kampanya",
|
76 |
+
"taksit",
|
77 |
+
"ödeme",
|
78 |
+
"bütçe",
|
79 |
+
"hesap",
|
80 |
+
"kur",
|
81 |
+
"bugün",
|
82 |
+
"yarın",
|
83 |
+
"dün",
|
84 |
+
"hafta",
|
85 |
+
"gün",
|
86 |
+
"saat",
|
87 |
+
"süre",
|
88 |
+
"bekleme",
|
89 |
+
"gecikme",
|
90 |
+
"erken",
|
91 |
+
"geç",
|
92 |
+
}
|
93 |
+
|
94 |
+
def get_turkish_stopwords(self):
|
95 |
+
"""Türkçe stop words listesi oluştur"""
|
96 |
+
github_url = "https://raw.githubusercontent.com/sgsinclair/trombone/master/src/main/resources/org/voyanttools/trombone/keywords/stop.tr.turkish-lucene.txt"
|
97 |
+
stop_words = set()
|
98 |
+
|
99 |
+
try:
|
100 |
+
response = requests.get(github_url)
|
101 |
+
if response.status_code == 200:
|
102 |
+
github_stops = set(
|
103 |
+
word.strip() for word in response.text.split("\n") if word.strip()
|
104 |
+
)
|
105 |
+
stop_words.update(github_stops)
|
106 |
+
except Exception as e:
|
107 |
+
print(f"GitHub'dan stop words çekilirken hata oluştu: {e}")
|
108 |
+
|
109 |
+
stop_words.update(set(nltk.corpus.stopwords.words("turkish")))
|
110 |
+
|
111 |
+
additional_stops = {
|
112 |
+
"bir",
|
113 |
+
"ve",
|
114 |
+
"çok",
|
115 |
+
"bu",
|
116 |
+
"de",
|
117 |
+
"da",
|
118 |
+
"için",
|
119 |
+
"ile",
|
120 |
+
"ben",
|
121 |
+
"sen",
|
122 |
+
"o",
|
123 |
+
"biz",
|
124 |
+
"siz",
|
125 |
+
"onlar",
|
126 |
+
"bu",
|
127 |
+
"şu",
|
128 |
+
"ama",
|
129 |
+
"fakat",
|
130 |
+
"ancak",
|
131 |
+
"lakin",
|
132 |
+
"ki",
|
133 |
+
"dahi",
|
134 |
+
"mi",
|
135 |
+
"mı",
|
136 |
+
"mu",
|
137 |
+
"mü",
|
138 |
+
"var",
|
139 |
+
"yok",
|
140 |
+
"olan",
|
141 |
+
"içinde",
|
142 |
+
"üzerinde",
|
143 |
+
"bana",
|
144 |
+
"sana",
|
145 |
+
"ona",
|
146 |
+
"bize",
|
147 |
+
"size",
|
148 |
+
"onlara",
|
149 |
+
"evet",
|
150 |
+
"hayır",
|
151 |
+
"tamam",
|
152 |
+
"oldu",
|
153 |
+
"olmuş",
|
154 |
+
"olacak",
|
155 |
+
"etmek",
|
156 |
+
"yapmak",
|
157 |
+
"kez",
|
158 |
+
"kere",
|
159 |
+
"defa",
|
160 |
+
"adet",
|
161 |
+
}
|
162 |
+
stop_words.update(additional_stops)
|
163 |
+
|
164 |
+
print(f"Toplam {len(stop_words)} adet stop words yüklendi.")
|
165 |
+
return stop_words
|
166 |
+
|
167 |
+
def preprocess_text(self, text):
|
168 |
+
if isinstance(text, str):
|
169 |
+
text = text.lower()
|
170 |
+
text = re.sub(r"[^\w\s]", "", text)
|
171 |
+
text = re.sub(r"\d+", "", text)
|
172 |
+
text = re.sub(r"\s+", " ", text).strip()
|
173 |
+
words = text.split()
|
174 |
+
words = [word for word in words if word not in self.turkish_stopwords]
|
175 |
+
return " ".join(words)
|
176 |
+
return ""
|
177 |
+
|
178 |
+
def setup_sentiment_model(self):
|
179 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
180 |
+
print(f"Using device for sentiment: {self.device}")
|
181 |
+
|
182 |
+
model_name = "savasy/bert-base-turkish-sentiment-cased"
|
183 |
+
self.sentiment_tokenizer = AutoTokenizer.from_pretrained(model_name)
|
184 |
+
self.sentiment_model = (
|
185 |
+
AutoModelForSequenceClassification.from_pretrained(model_name)
|
186 |
+
.to(self.device)
|
187 |
+
.to(torch.float32)
|
188 |
+
)
|
189 |
+
|
190 |
+
def setup_gemini_model(self, api_key):
|
191 |
+
genai.configure(api_key=api_key)
|
192 |
+
self.gemini_model = genai.GenerativeModel("gemini-pro")
|
193 |
+
|
194 |
+
def filter_reviews(self, df):
|
195 |
+
def is_product_review(text):
|
196 |
+
if not isinstance(text, str):
|
197 |
+
return False
|
198 |
+
return not any(word in text.lower() for word in self.logistics_seller_words)
|
199 |
+
|
200 |
+
filtered_df = df[df["Yorum"].apply(is_product_review)].copy()
|
201 |
+
|
202 |
+
print(f"\nFiltreleme İstatistikleri:")
|
203 |
+
print(f"Toplam yorum sayısı: {len(df)}")
|
204 |
+
print(f"Ürün yorumu sayısı: {len(filtered_df)}")
|
205 |
+
print(f"Filtrelenen yorum sayısı: {len(df) - len(filtered_df)}")
|
206 |
+
print(
|
207 |
+
f"Filtreleme oranı: {((len(df) - len(filtered_df)) / len(df) * 100):.2f}%"
|
208 |
+
)
|
209 |
+
|
210 |
+
return filtered_df
|
211 |
+
|
212 |
+
def analyze_sentiment(self, df):
|
213 |
+
def predict_sentiment(text):
|
214 |
+
if not isinstance(text, str) or len(text.strip()) == 0:
|
215 |
+
return {"label": "Nötr", "score": 0.5}
|
216 |
+
|
217 |
+
try:
|
218 |
+
cleaned_text = self.preprocess_text(text)
|
219 |
+
inputs = self.sentiment_tokenizer(
|
220 |
+
cleaned_text,
|
221 |
+
return_tensors="pt",
|
222 |
+
truncation=True,
|
223 |
+
max_length=512,
|
224 |
+
padding=True,
|
225 |
+
).to(self.device)
|
226 |
+
|
227 |
+
with torch.no_grad():
|
228 |
+
outputs = self.sentiment_model(**inputs)
|
229 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=1)
|
230 |
+
prediction = probs.cpu().numpy()[0]
|
231 |
+
|
232 |
+
score = float(prediction[1])
|
233 |
+
|
234 |
+
if score > 0.75:
|
235 |
+
label = "Pozitif"
|
236 |
+
elif score < 0.25:
|
237 |
+
label = "Negatif"
|
238 |
+
elif score > 0.55:
|
239 |
+
label = "Pozitif"
|
240 |
+
elif score < 0.45:
|
241 |
+
label = "Negatif"
|
242 |
+
else:
|
243 |
+
label = "Nötr"
|
244 |
+
|
245 |
+
return {"label": label, "score": score}
|
246 |
+
|
247 |
+
except Exception as e:
|
248 |
+
print(f"Error in sentiment prediction: {e}")
|
249 |
+
return {"label": "Nötr", "score": 0.5}
|
250 |
+
|
251 |
+
print("\nSentiment analizi yapılıyor...")
|
252 |
+
results = [predict_sentiment(text) for text in df["Yorum"]]
|
253 |
+
|
254 |
+
df["sentiment_score"] = [r["score"] for r in results]
|
255 |
+
df["sentiment_label"] = [r["label"] for r in results]
|
256 |
+
df["cleaned_text"] = df["Yorum"].apply(self.preprocess_text)
|
257 |
+
|
258 |
+
return df
|
259 |
+
|
260 |
+
def get_key_phrases(self, text_series):
|
261 |
+
text = " ".join(text_series.astype(str))
|
262 |
+
words = self.preprocess_text(text).split()
|
263 |
+
word_freq = Counter(words)
|
264 |
+
return {
|
265 |
+
word: count
|
266 |
+
for word, count in word_freq.items()
|
267 |
+
if count >= 3 and len(word) > 2
|
268 |
+
}
|
269 |
+
|
270 |
+
def generate_summary(self, df):
|
271 |
+
# en onemli yorumları sec
|
272 |
+
high_rated = df[df["Yıldız Sayısı"] >= 4]
|
273 |
+
low_rated = df[df["Yıldız Sayısı"] <= 2]
|
274 |
+
|
275 |
+
# onemli kelimleri ve yorumlari al
|
276 |
+
positive_features = self.get_key_phrases(high_rated["cleaned_text"])
|
277 |
+
negative_features = self.get_key_phrases(low_rated["cleaned_text"])
|
278 |
+
|
279 |
+
top_positive = (
|
280 |
+
high_rated.sort_values("sentiment_score", ascending=False)["Yorum"]
|
281 |
+
.head(3)
|
282 |
+
.tolist()
|
283 |
+
)
|
284 |
+
top_negative = (
|
285 |
+
low_rated.sort_values("sentiment_score")["Yorum"].head(2).tolist()
|
286 |
+
)
|
287 |
+
|
288 |
+
summary_prompt = f"""Bu ürünün genel değerlendirmesini doğal bir dille özetleyeceksin.
|
289 |
+
|
290 |
+
Veriler:
|
291 |
+
- Toplam {len(df)} değerlendirme var
|
292 |
+
- Ortalama puan: {df['Yıldız Sayısı'].mean():.1f}/5
|
293 |
+
- Pozitif yorum oranı: {(len(df[df['sentiment_label'] == 'Pozitif']) / len(df) * 100):.1f}%
|
294 |
+
|
295 |
+
En çok tekrar eden olumlu ifadeler: {', '.join(list(positive_features.keys())[:5])}
|
296 |
+
En çok tekrar eden olumsuz ifadeler: {', '.join(list(negative_features.keys())[:5])}
|
297 |
+
|
298 |
+
Örnek olumlu yorumlar:
|
299 |
+
{' '.join(top_positive)}
|
300 |
+
|
301 |
+
Örnek olumsuz yorumlar:
|
302 |
+
{' '.join(top_negative)}
|
303 |
+
|
304 |
+
Lütfen bu bilgileri kullanarak, ürünle ilgili kullanıcı deneyimlerini tek bir paragrafta, sohbet eder gibi doğal bir dille özetle.
|
305 |
+
İstatistikleri direkt verme, onları cümlelerin içine yerleştir. Olumlu ve olumsuz yönleri dengeli bir şekilde aktar."""
|
306 |
+
|
307 |
+
response = self.gemini_model.generate_content(summary_prompt)
|
308 |
+
return response.text
|
309 |
+
|
310 |
+
|
311 |
+
def analyze_reviews(file_path, api_key):
|
312 |
+
print("Analiz başlatılıyor...")
|
313 |
+
df = pd.read_csv(file_path)
|
314 |
+
|
315 |
+
analyzer = ReviewAnalyzer(api_key)
|
316 |
+
|
317 |
+
filtered_df = analyzer.filter_reviews(df)
|
318 |
+
|
319 |
+
analyzed_df = analyzer.analyze_sentiment(filtered_df)
|
320 |
+
|
321 |
+
summary = analyzer.generate_summary(analyzed_df)
|
322 |
+
|
323 |
+
return summary, analyzed_df
|
scripts/review_summarizer_trendyol_llama.py
ADDED
@@ -0,0 +1,411 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import warnings
|
4 |
+
from collections import Counter
|
5 |
+
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import nltk
|
8 |
+
import numpy as np
|
9 |
+
import pandas as pd
|
10 |
+
import requests
|
11 |
+
import seaborn as sns
|
12 |
+
import torch
|
13 |
+
from nltk.tokenize import word_tokenize
|
14 |
+
from nltk.util import ngrams
|
15 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
|
16 |
+
from wordcloud import WordCloud
|
17 |
+
|
18 |
+
warnings.filterwarnings("ignore")
|
19 |
+
|
20 |
+
nltk.download("stopwords")
|
21 |
+
nltk.download("punkt")
|
22 |
+
|
23 |
+
|
24 |
+
class ReviewAnalyzer:
|
25 |
+
def __init__(self):
|
26 |
+
self.turkish_stopwords = self.get_turkish_stopwords()
|
27 |
+
self.setup_sentiment_model()
|
28 |
+
self.setup_summary_model()
|
29 |
+
|
30 |
+
# Lojistik ve satıcı ile ilgili kelimeleri tanımla
|
31 |
+
self.logistics_seller_words = {
|
32 |
+
# Kargo ve teslimat ile ilgili
|
33 |
+
"kargo",
|
34 |
+
"kargocu",
|
35 |
+
"paket",
|
36 |
+
"paketleme",
|
37 |
+
"teslimat",
|
38 |
+
"teslim",
|
39 |
+
"gönderi",
|
40 |
+
"gönderim",
|
41 |
+
"ulaştı",
|
42 |
+
"ulaşım",
|
43 |
+
"geldi",
|
44 |
+
"kurye",
|
45 |
+
"dağıtım",
|
46 |
+
"hasarlı",
|
47 |
+
"hasar",
|
48 |
+
"kutu",
|
49 |
+
"ambalaj",
|
50 |
+
"zamanında",
|
51 |
+
"geç",
|
52 |
+
"hızlı",
|
53 |
+
"yavaş",
|
54 |
+
"günde",
|
55 |
+
"saatte",
|
56 |
+
# Satıcı ve mağaza ile ilgili
|
57 |
+
"satıcı",
|
58 |
+
"mağaza",
|
59 |
+
"sipariş",
|
60 |
+
"trendyol",
|
61 |
+
"tedarik",
|
62 |
+
"stok",
|
63 |
+
"garanti",
|
64 |
+
"fatura",
|
65 |
+
"iade",
|
66 |
+
"geri",
|
67 |
+
"müşteri",
|
68 |
+
"hizmet",
|
69 |
+
"destek",
|
70 |
+
"iletişim",
|
71 |
+
"şikayet",
|
72 |
+
"sorun",
|
73 |
+
"çözüm",
|
74 |
+
"hediye",
|
75 |
+
# Fiyat ve ödeme ile ilgili
|
76 |
+
"fiyat",
|
77 |
+
"ücret",
|
78 |
+
"para",
|
79 |
+
"bedava",
|
80 |
+
"ücretsiz",
|
81 |
+
"indirim",
|
82 |
+
"kampanya",
|
83 |
+
"taksit",
|
84 |
+
"ödeme",
|
85 |
+
"bütçe",
|
86 |
+
"hesap",
|
87 |
+
"kur",
|
88 |
+
# Zaman ile ilgili teslimat kelimeleri
|
89 |
+
"bugün",
|
90 |
+
"yarın",
|
91 |
+
"dün",
|
92 |
+
"hafta",
|
93 |
+
"gün",
|
94 |
+
"saat",
|
95 |
+
"süre",
|
96 |
+
"bekleme",
|
97 |
+
"gecikme",
|
98 |
+
"erken",
|
99 |
+
"geç",
|
100 |
+
}
|
101 |
+
|
102 |
+
def get_turkish_stopwords(self):
|
103 |
+
"""Genişletilmiş stop words listesini hazırla"""
|
104 |
+
github_url = "https://raw.githubusercontent.com/sgsinclair/trombone/master/src/main/resources/org/voyanttools/trombone/keywords/stop.tr.turkish-lucene.txt"
|
105 |
+
stop_words = set()
|
106 |
+
|
107 |
+
try:
|
108 |
+
response = requests.get(github_url)
|
109 |
+
if response.status_code == 200:
|
110 |
+
github_stops = set(
|
111 |
+
word.strip() for word in response.text.split("\n") if word.strip()
|
112 |
+
)
|
113 |
+
stop_words.update(github_stops)
|
114 |
+
except Exception as e:
|
115 |
+
print(f"GitHub'dan stop words çekilirken hata oluştu: {e}")
|
116 |
+
|
117 |
+
stop_words.update(set(nltk.corpus.stopwords.words("turkish")))
|
118 |
+
|
119 |
+
additional_stops = {
|
120 |
+
"bir",
|
121 |
+
"ve",
|
122 |
+
"çok",
|
123 |
+
"bu",
|
124 |
+
"de",
|
125 |
+
"da",
|
126 |
+
"için",
|
127 |
+
"ile",
|
128 |
+
"ben",
|
129 |
+
"sen",
|
130 |
+
"o",
|
131 |
+
"biz",
|
132 |
+
"siz",
|
133 |
+
"onlar",
|
134 |
+
"bu",
|
135 |
+
"şu",
|
136 |
+
"ama",
|
137 |
+
"fakat",
|
138 |
+
"ancak",
|
139 |
+
"lakin",
|
140 |
+
"ki",
|
141 |
+
"dahi",
|
142 |
+
"mi",
|
143 |
+
"mı",
|
144 |
+
"mu",
|
145 |
+
"mü",
|
146 |
+
"var",
|
147 |
+
"yok",
|
148 |
+
"olan",
|
149 |
+
"içinde",
|
150 |
+
"üzerinde",
|
151 |
+
"bana",
|
152 |
+
"sana",
|
153 |
+
"ona",
|
154 |
+
"bize",
|
155 |
+
"size",
|
156 |
+
"onlara",
|
157 |
+
"evet",
|
158 |
+
"hayır",
|
159 |
+
"tamam",
|
160 |
+
"oldu",
|
161 |
+
"olmuş",
|
162 |
+
"olacak",
|
163 |
+
"etmek",
|
164 |
+
"yapmak",
|
165 |
+
"kez",
|
166 |
+
"kere",
|
167 |
+
"defa",
|
168 |
+
"adet",
|
169 |
+
}
|
170 |
+
stop_words.update(additional_stops)
|
171 |
+
|
172 |
+
print(f"Toplam {len(stop_words)} adet stop words yüklendi.")
|
173 |
+
return stop_words
|
174 |
+
|
175 |
+
def preprocess_text(self, text):
|
176 |
+
"""Metin ön işleme"""
|
177 |
+
if isinstance(text, str):
|
178 |
+
# Küçük harfe çevir
|
179 |
+
text = text.lower()
|
180 |
+
# Özel karakterleri temizle
|
181 |
+
text = re.sub(r"[^\w\s]", "", text)
|
182 |
+
# Sayıları temizle
|
183 |
+
text = re.sub(r"\d+", "", text)
|
184 |
+
# Fazla boşlukları temizle
|
185 |
+
text = re.sub(r"\s+", " ", text).strip()
|
186 |
+
# Stop words'leri çıkar
|
187 |
+
words = text.split()
|
188 |
+
words = [word for word in words if word not in self.turkish_stopwords]
|
189 |
+
return " ".join(words)
|
190 |
+
return ""
|
191 |
+
|
192 |
+
def setup_sentiment_model(self):
|
193 |
+
"""Sentiment analiz modelini hazırla"""
|
194 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
195 |
+
print(f"Using device for sentiment: {self.device}")
|
196 |
+
|
197 |
+
model_name = "savasy/bert-base-turkish-sentiment-cased"
|
198 |
+
self.sentiment_tokenizer = AutoTokenizer.from_pretrained(model_name)
|
199 |
+
self.sentiment_model = (
|
200 |
+
AutoModelForSequenceClassification.from_pretrained(model_name)
|
201 |
+
.to(self.device)
|
202 |
+
.to(torch.float32)
|
203 |
+
)
|
204 |
+
|
205 |
+
def setup_summary_model(self):
|
206 |
+
"""Özet modelini hazırla"""
|
207 |
+
print("Loading Trendyol-LLM model...")
|
208 |
+
model_id = "Trendyol/Trendyol-LLM-8b-chat-v2.0"
|
209 |
+
|
210 |
+
self.summary_pipe = pipeline(
|
211 |
+
"text-generation",
|
212 |
+
model=model_id,
|
213 |
+
torch_dtype="auto",
|
214 |
+
device_map="auto",
|
215 |
+
)
|
216 |
+
|
217 |
+
self.terminators = [
|
218 |
+
self.summary_pipe.tokenizer.eos_token_id,
|
219 |
+
self.summary_pipe.tokenizer.convert_tokens_to_ids("<|eot_id|>"),
|
220 |
+
]
|
221 |
+
|
222 |
+
self.sampling_params = {
|
223 |
+
"do_sample": True,
|
224 |
+
"temperature": 0.3,
|
225 |
+
"top_k": 50,
|
226 |
+
"top_p": 0.9,
|
227 |
+
"repetition_penalty": 1.1,
|
228 |
+
}
|
229 |
+
|
230 |
+
def filter_reviews(self, df):
|
231 |
+
"""Ürün ile ilgili olmayan yorumları filtrele"""
|
232 |
+
|
233 |
+
def is_product_review(text):
|
234 |
+
if not isinstance(text, str):
|
235 |
+
return False
|
236 |
+
return not any(word in text.lower() for word in self.logistics_seller_words)
|
237 |
+
|
238 |
+
filtered_df = df[df["Yorum"].apply(is_product_review)].copy()
|
239 |
+
|
240 |
+
print(f"\nFiltreleme İstatistikleri:")
|
241 |
+
print(f"Toplam yorum sayısı: {len(df)}")
|
242 |
+
print(f"Ürün yorumu sayısı: {len(filtered_df)}")
|
243 |
+
print(f"Filtrelenen yorum sayısı: {len(df) - len(filtered_df)}")
|
244 |
+
print(
|
245 |
+
f"Filtreleme oranı: {((len(df) - len(filtered_df)) / len(df) * 100):.2f}%"
|
246 |
+
)
|
247 |
+
|
248 |
+
return filtered_df
|
249 |
+
|
250 |
+
def analyze_sentiment(self, df):
|
251 |
+
"""Sentiment analizi yap"""
|
252 |
+
|
253 |
+
def predict_sentiment(text):
|
254 |
+
if not isinstance(text, str) or len(text.strip()) == 0:
|
255 |
+
return {"label": "Nötr", "score": 0.5}
|
256 |
+
|
257 |
+
try:
|
258 |
+
cleaned_text = self.preprocess_text(text)
|
259 |
+
|
260 |
+
inputs = self.sentiment_tokenizer(
|
261 |
+
cleaned_text,
|
262 |
+
return_tensors="pt",
|
263 |
+
truncation=True,
|
264 |
+
max_length=512,
|
265 |
+
padding=True,
|
266 |
+
).to(self.device)
|
267 |
+
|
268 |
+
with torch.no_grad():
|
269 |
+
outputs = self.sentiment_model(**inputs)
|
270 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=1)
|
271 |
+
prediction = probs.cpu().numpy()[0]
|
272 |
+
|
273 |
+
score = float(prediction[1])
|
274 |
+
|
275 |
+
if score > 0.75:
|
276 |
+
label = "Pozitif"
|
277 |
+
elif score < 0.25:
|
278 |
+
label = "Negatif"
|
279 |
+
elif score > 0.55:
|
280 |
+
label = "Pozitif"
|
281 |
+
elif score < 0.45:
|
282 |
+
label = "Negatif"
|
283 |
+
else:
|
284 |
+
label = "Nötr"
|
285 |
+
|
286 |
+
return {"label": label, "score": score}
|
287 |
+
|
288 |
+
except Exception as e:
|
289 |
+
print(f"Error in sentiment prediction: {e}")
|
290 |
+
return {"label": "Nötr", "score": 0.5}
|
291 |
+
|
292 |
+
print("\nSentiment analizi yapılıyor...")
|
293 |
+
results = [predict_sentiment(text) for text in df["Yorum"]]
|
294 |
+
|
295 |
+
df["sentiment_score"] = [r["score"] for r in results]
|
296 |
+
df["sentiment_label"] = [r["label"] for r in results]
|
297 |
+
df["cleaned_text"] = df["Yorum"].apply(self.preprocess_text)
|
298 |
+
|
299 |
+
return df
|
300 |
+
|
301 |
+
def get_key_phrases(self, text_series):
|
302 |
+
"""En önemli anahtar kelimeleri bul"""
|
303 |
+
text = " ".join(text_series.astype(str))
|
304 |
+
words = self.preprocess_text(text).split()
|
305 |
+
word_freq = Counter(words)
|
306 |
+
# En az 3 kez geçen kelimeleri al
|
307 |
+
return {
|
308 |
+
word: count
|
309 |
+
for word, count in word_freq.items()
|
310 |
+
if count >= 3 and len(word) > 2
|
311 |
+
}
|
312 |
+
|
313 |
+
def generate_summary(self, df):
|
314 |
+
"""Yorumların genel özetini oluştur"""
|
315 |
+
# En önemli yorumları seç
|
316 |
+
high_rated = df[df["Yıldız Sayısı"] >= 4]
|
317 |
+
low_rated = df[df["Yıldız Sayısı"] <= 2]
|
318 |
+
|
319 |
+
# Önemli kelimeleri bul
|
320 |
+
positive_phrases = self.get_key_phrases(high_rated["cleaned_text"])
|
321 |
+
negative_phrases = self.get_key_phrases(low_rated["cleaned_text"])
|
322 |
+
|
323 |
+
# En anlamlı yorumları seç
|
324 |
+
top_positive = (
|
325 |
+
high_rated.sort_values("sentiment_score", ascending=False)["Yorum"]
|
326 |
+
.head(3)
|
327 |
+
.tolist()
|
328 |
+
)
|
329 |
+
top_negative = (
|
330 |
+
low_rated.sort_values("sentiment_score")["Yorum"].head(2).tolist()
|
331 |
+
)
|
332 |
+
|
333 |
+
# En sık kullanılan kelimeler
|
334 |
+
pos_features = ", ".join(
|
335 |
+
[f"{word} ({count})" for word, count in list(positive_phrases.items())[:5]]
|
336 |
+
)
|
337 |
+
neg_features = ", ".join(
|
338 |
+
[f"{word} ({count})" for word, count in list(negative_phrases.items())[:5]]
|
339 |
+
)
|
340 |
+
|
341 |
+
summary_prompt = f"""
|
342 |
+
MacBook Air Kullanıcı Yorumları Analizi:
|
343 |
+
|
344 |
+
İSTATİSTİKLER:
|
345 |
+
- Toplam Yorum: {len(df)}
|
346 |
+
- Ortalama Puan: {df['Yıldız Sayısı'].mean():.1f}/5
|
347 |
+
- Pozitif Yorum Oranı: {(len(df[df['sentiment_label'] == 'Pozitif']) / len(df) * 100):.1f}%
|
348 |
+
|
349 |
+
SIKÇA KULLANILAN KELİMELER:
|
350 |
+
Olumlu: {pos_features}
|
351 |
+
Olumsuz: {neg_features}
|
352 |
+
|
353 |
+
ÖRNEK OLUMLU YORUMLAR:
|
354 |
+
{' '.join([f"• {yorum[:200]}..." for yorum in top_positive])}
|
355 |
+
|
356 |
+
ÖRNEK OLUMSUZ YORUMLAR:
|
357 |
+
{' '.join([f"• {yorum[:200]}..." for yorum in top_negative])}
|
358 |
+
|
359 |
+
Lütfen bu veriler ışığında bu ürün için kısa ve öz bir değerlendirme yap.
|
360 |
+
Özellikle kullanıcıların en çok beğendiği özellikler ve en sık dile getirilen sorunlara odaklan.
|
361 |
+
Değerlendirmeyi 3 paragrafla sınırla ve somut örnekler kullan.
|
362 |
+
"""
|
363 |
+
|
364 |
+
messages = [
|
365 |
+
{
|
366 |
+
"role": "system",
|
367 |
+
"content": "Sen bir ürün yorumları analiz uzmanısın. Yorumları özetlerken nesnel ve açık ol.",
|
368 |
+
},
|
369 |
+
{"role": "user", "content": summary_prompt},
|
370 |
+
]
|
371 |
+
|
372 |
+
outputs = self.summary_pipe(
|
373 |
+
messages,
|
374 |
+
max_new_tokens=512,
|
375 |
+
eos_token_id=self.terminators,
|
376 |
+
return_full_text=False,
|
377 |
+
**self.sampling_params,
|
378 |
+
)
|
379 |
+
|
380 |
+
return outputs[0]["generated_text"]
|
381 |
+
|
382 |
+
|
383 |
+
def analyze_reviews(file_path):
|
384 |
+
df = pd.read_csv(file_path)
|
385 |
+
|
386 |
+
analyzer = ReviewAnalyzer()
|
387 |
+
|
388 |
+
filtered_df = analyzer.filter_reviews(df)
|
389 |
+
|
390 |
+
print("Sentiment analizi başlatılıyor...")
|
391 |
+
analyzed_df = analyzer.analyze_sentiment(filtered_df)
|
392 |
+
|
393 |
+
analyzed_df.to_csv(
|
394 |
+
"sentiment_analyzed_reviews.csv", index=False, encoding="utf-8-sig"
|
395 |
+
)
|
396 |
+
print("Sentiment analizi tamamlandı ve kaydedildi.")
|
397 |
+
|
398 |
+
print("\nÜrün özeti oluşturuluyor...")
|
399 |
+
summary = analyzer.generate_summary(analyzed_df)
|
400 |
+
|
401 |
+
with open("urun_ozeti.txt", "w", encoding="utf-8") as f:
|
402 |
+
f.write(summary)
|
403 |
+
|
404 |
+
print("\nÜrün Özeti:")
|
405 |
+
print("-" * 50)
|
406 |
+
print(summary)
|
407 |
+
print("\nÖzet 'urun_ozeti.txt' dosyasına kaydedildi.")
|
408 |
+
|
409 |
+
|
410 |
+
if __name__ == "__main__":
|
411 |
+
analyze_reviews("data/macbook_product_comments_with_ratings.csv")
|
scripts/sentiment_bert_model.py
CHANGED
@@ -1,166 +1,203 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
|
4 |
-
import
|
5 |
-
|
6 |
-
import
|
7 |
-
import
|
8 |
-
import
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
self.
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
sentiment
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import warnings
|
3 |
+
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
+
import seaborn as sns
|
8 |
+
import torch
|
9 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
10 |
+
|
11 |
+
warnings.filterwarnings("ignore")
|
12 |
+
|
13 |
+
|
14 |
+
class TurkishSentimentAnalyzer:
|
15 |
+
def __init__(self):
|
16 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
+
print(f"Using device: {self.device}")
|
18 |
+
|
19 |
+
# sentiment model
|
20 |
+
model_name = "savasy/bert-base-turkish-sentiment-cased"
|
21 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
22 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(model_name).to(
|
23 |
+
self.device
|
24 |
+
)
|
25 |
+
|
26 |
+
# Lojistik ve satıcı kelimeleri
|
27 |
+
self.logistics_seller_words = {
|
28 |
+
"kargo",
|
29 |
+
"kargocu",
|
30 |
+
"paket",
|
31 |
+
"paketleme",
|
32 |
+
"teslimat",
|
33 |
+
"teslim",
|
34 |
+
"gönderi",
|
35 |
+
"gönderim",
|
36 |
+
"ulaştı",
|
37 |
+
"ulaşım",
|
38 |
+
"geldi",
|
39 |
+
"kurye",
|
40 |
+
"satıcı",
|
41 |
+
"mağaza",
|
42 |
+
"sipariş",
|
43 |
+
"trendyol",
|
44 |
+
"tedarik",
|
45 |
+
"stok",
|
46 |
+
"fiyat",
|
47 |
+
"ücret",
|
48 |
+
"para",
|
49 |
+
"bedava",
|
50 |
+
"indirim",
|
51 |
+
"kampanya",
|
52 |
+
"havale",
|
53 |
+
"ödeme",
|
54 |
+
"garanti",
|
55 |
+
"fatura",
|
56 |
+
}
|
57 |
+
|
58 |
+
def predict_sentiment(self, text):
|
59 |
+
"""Tek bir metin için sentiment tahmini yap"""
|
60 |
+
if not isinstance(text, str) or len(text.strip()) == 0:
|
61 |
+
return {"label": "Nötr", "score": 0.5}
|
62 |
+
|
63 |
+
try:
|
64 |
+
inputs = self.tokenizer(
|
65 |
+
text, return_tensors="pt", truncation=True, max_length=512, padding=True
|
66 |
+
).to(self.device)
|
67 |
+
|
68 |
+
with torch.no_grad():
|
69 |
+
outputs = self.model(**inputs)
|
70 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=1)
|
71 |
+
prediction = probs.cpu().numpy()[0]
|
72 |
+
|
73 |
+
# İki sınıflı model için (positive/negative)
|
74 |
+
score = float(prediction[1]) # Pozitif sınıfın olasılığı
|
75 |
+
|
76 |
+
# Daha hassas skor eşikleri
|
77 |
+
if score > 0.75: # Yüksek güvenle pozitif
|
78 |
+
label = "Pozitif"
|
79 |
+
elif score < 0.25: # Yüksek güvenle negatif
|
80 |
+
label = "Negatif"
|
81 |
+
elif score > 0.55: # Hafif pozitif eğilim
|
82 |
+
label = "Pozitif"
|
83 |
+
elif score < 0.45: # Hafif negatif eğilim
|
84 |
+
label = "Negatif"
|
85 |
+
else:
|
86 |
+
label = "Nötr"
|
87 |
+
|
88 |
+
return {"label": label, "score": score}
|
89 |
+
|
90 |
+
except Exception as e:
|
91 |
+
print(f"Error in sentiment prediction: {e}")
|
92 |
+
return {"label": "Nötr", "score": 0.5}
|
93 |
+
|
94 |
+
def filter_product_reviews(self, df):
|
95 |
+
"""Ürün ile ilgili olmayan yorumları filtrele"""
|
96 |
+
|
97 |
+
def is_product_review(text):
|
98 |
+
if not isinstance(text, str):
|
99 |
+
return False
|
100 |
+
return not any(word in text.lower() for word in self.logistics_seller_words)
|
101 |
+
|
102 |
+
filtered_df = df[df["Yorum"].apply(is_product_review)].copy()
|
103 |
+
|
104 |
+
print(f"\nFiltreleme İstatistikleri:")
|
105 |
+
print(f"Toplam yorum sayısı: {len(df)}")
|
106 |
+
print(f"Ürün yorumu sayısı: {len(filtered_df)}")
|
107 |
+
print(f"Filtrelenen yorum sayısı: {len(df) - len(filtered_df)}")
|
108 |
+
print(
|
109 |
+
f"Filtreleme oranı: {((len(df) - len(filtered_df)) / len(df) * 100):.2f}%"
|
110 |
+
)
|
111 |
+
|
112 |
+
return filtered_df
|
113 |
+
|
114 |
+
def analyze_reviews(self, df):
|
115 |
+
"""Tüm yorumları analiz et"""
|
116 |
+
print("\nSentiment analizi başlatılıyor...")
|
117 |
+
|
118 |
+
filtered_df = self.filter_product_reviews(df)
|
119 |
+
|
120 |
+
# Sentiment analizi
|
121 |
+
results = []
|
122 |
+
for text in filtered_df["Yorum"]:
|
123 |
+
sentiment = self.predict_sentiment(text)
|
124 |
+
results.append(sentiment)
|
125 |
+
|
126 |
+
filtered_df["sentiment_score"] = [r["score"] for r in results]
|
127 |
+
filtered_df["sentiment_label"] = [r["label"] for r in results]
|
128 |
+
|
129 |
+
return filtered_df
|
130 |
+
|
131 |
+
def create_visualizations(self, df):
|
132 |
+
"""Analiz sonuçlarını görselleştir"""
|
133 |
+
if not os.path.exists("images"):
|
134 |
+
os.makedirs("images")
|
135 |
+
|
136 |
+
# 1. Sentiment Dağılımı
|
137 |
+
plt.figure(figsize=(12, 6))
|
138 |
+
sns.countplot(
|
139 |
+
data=df, x="sentiment_label", order=["Pozitif", "Nötr", "Negatif"]
|
140 |
+
)
|
141 |
+
plt.title("Sentiment Dağılımı")
|
142 |
+
plt.tight_layout()
|
143 |
+
plt.savefig("images/sentiment_distribution.png", bbox_inches="tight", dpi=300)
|
144 |
+
plt.close()
|
145 |
+
|
146 |
+
# 2. Yıldız-Sentiment İlişkisi
|
147 |
+
plt.figure(figsize=(12, 6))
|
148 |
+
df_mean = df.groupby("Yıldız Sayısı")["sentiment_score"].mean().reset_index()
|
149 |
+
sns.barplot(data=df_mean, x="Yıldız Sayısı", y="sentiment_score")
|
150 |
+
plt.title("Yıldız Sayısına Göre Ortalama Sentiment Skoru")
|
151 |
+
plt.tight_layout()
|
152 |
+
plt.savefig("images/star_sentiment_relation.png", bbox_inches="tight", dpi=300)
|
153 |
+
plt.close()
|
154 |
+
|
155 |
+
# 3. Sentiment Score Dağılımı
|
156 |
+
plt.figure(figsize=(12, 6))
|
157 |
+
sns.histplot(data=df, x="sentiment_score", bins=30)
|
158 |
+
plt.title("Sentiment Score Dağılımı")
|
159 |
+
plt.tight_layout()
|
160 |
+
plt.savefig(
|
161 |
+
"images/sentiment_score_distribution.png", bbox_inches="tight", dpi=300
|
162 |
+
)
|
163 |
+
plt.close()
|
164 |
+
|
165 |
+
def print_statistics(self, df):
|
166 |
+
"""Analiz istatistiklerini yazdır"""
|
167 |
+
print("\nSentiment Analizi Sonuçları:")
|
168 |
+
print("-" * 50)
|
169 |
+
|
170 |
+
sentiment_counts = df["sentiment_label"].value_counts()
|
171 |
+
total_reviews = len(df)
|
172 |
+
|
173 |
+
for label, count in sentiment_counts.items():
|
174 |
+
percentage = (count / total_reviews) * 100
|
175 |
+
print(f"{label}: {count} yorum ({percentage:.2f}%)")
|
176 |
+
|
177 |
+
print("\nYıldız Bazlı Sentiment Skorları:")
|
178 |
+
print("-" * 50)
|
179 |
+
star_means = df.groupby("Yıldız Sayısı")["sentiment_score"].mean()
|
180 |
+
for star, score in star_means.items():
|
181 |
+
print(f"{star} Yıldız ortalama sentiment skoru: {score:.3f}")
|
182 |
+
|
183 |
+
|
184 |
+
def main():
|
185 |
+
df = pd.read_csv("data/macbook_product_comments_with_ratings.csv")
|
186 |
+
|
187 |
+
analyzer = TurkishSentimentAnalyzer()
|
188 |
+
|
189 |
+
print("Analiz başlatılıyor...")
|
190 |
+
analyzed_df = analyzer.analyze_reviews(df)
|
191 |
+
|
192 |
+
print("\nGörselleştirmeler oluşturuluyor...")
|
193 |
+
analyzer.create_visualizations(analyzed_df)
|
194 |
+
|
195 |
+
analyzer.print_statistics(analyzed_df)
|
196 |
+
|
197 |
+
output_file = "sentiment_analyzed_reviews.csv"
|
198 |
+
analyzed_df.to_csv(output_file, index=False, encoding="utf-8-sig")
|
199 |
+
print(f"\nSonuçlar '{output_file}' dosyasına kaydedildi.")
|
200 |
+
|
201 |
+
|
202 |
+
if __name__ == "__main__":
|
203 |
+
main()
|