Spaces:
Running
Running
Upload 4 files
Browse files- README.md +4 -3
- app.py +225 -0
- gitattributes +49 -0
- requirements.txt +8 -0
README.md
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: ⚡
|
4 |
-
colorFrom:
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Specific Object Recognition In The Wild
|
3 |
emoji: ⚡
|
4 |
+
colorFrom: red
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.42.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: openrail
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from transformers import OwlViTProcessor, OwlViTForObjectDetection
|
5 |
+
from PIL import Image, ImageDraw
|
6 |
+
import cv2
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import tempfile
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
import matplotlib.cm as cm
|
11 |
+
from io import BytesIO
|
12 |
+
from SuperGluePretrainedNetwork.models.matching import Matching
|
13 |
+
from SuperGluePretrainedNetwork.models.utils import read_image
|
14 |
+
|
15 |
+
# Set device
|
16 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
+
|
18 |
+
# Load models
|
19 |
+
model = OwlViTForObjectDetection.from_pretrained("google/owlvit-base-patch32").to(device)
|
20 |
+
processor = OwlViTProcessor.from_pretrained("google/owlvit-base-patch32")
|
21 |
+
|
22 |
+
matching = Matching({
|
23 |
+
'superpoint': {'nms_radius': 4, 'keypoint_threshold': 0.005, 'max_keypoints': 1024},
|
24 |
+
'superglue': {'weights': 'outdoor', 'sinkhorn_iterations': 20, 'match_threshold': 0.2}
|
25 |
+
}).eval().to(device)
|
26 |
+
|
27 |
+
# Utility functions
|
28 |
+
def save_array_to_temp_image(arr):
|
29 |
+
rgb_arr = cv2.cvtColor(arr, cv2.COLOR_BGR2RGB)
|
30 |
+
img = Image.fromarray(rgb_arr)
|
31 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png')
|
32 |
+
temp_file_name = temp_file.name
|
33 |
+
temp_file.close()
|
34 |
+
img.save(temp_file_name)
|
35 |
+
return temp_file_name
|
36 |
+
|
37 |
+
def unified_matching_plot2(image0, image1, kpts0, kpts1, mkpts0, mkpts1, color, text, path=None, show_keypoints=False, fast_viz=False, opencv_display=False, opencv_title='matches', small_text=[]):
|
38 |
+
height = min(image0.shape[0], image1.shape[0])
|
39 |
+
image0_resized = cv2.resize(image0, (int(image0.shape[1] * height / image0.shape[0]), height))
|
40 |
+
image1_resized = cv2.resize(image1, (int(image1.shape[1] * height / image1.shape[0]), height))
|
41 |
+
|
42 |
+
plt.figure(figsize=(15, 15))
|
43 |
+
plt.subplot(1, 2, 1)
|
44 |
+
plt.imshow(image0_resized)
|
45 |
+
plt.scatter(kpts0[:, 0], kpts0[:, 1], color='r', s=1)
|
46 |
+
plt.axis('off')
|
47 |
+
|
48 |
+
plt.subplot(1, 2, 2)
|
49 |
+
plt.imshow(image1_resized)
|
50 |
+
plt.scatter(kpts1[:, 0], kpts1[:, 1], color='r', s=1)
|
51 |
+
plt.axis('off')
|
52 |
+
|
53 |
+
fig, ax = plt.subplots(figsize=(20, 20))
|
54 |
+
plt.plot([mkpts0[:, 0], mkpts1[:, 0] + image0_resized.shape[1]], [mkpts0[:, 1], mkpts1[:, 1]], 'r', lw=0.5)
|
55 |
+
plt.scatter(mkpts0[:, 0], mkpts0[:, 1], s=2, marker='o', color='b')
|
56 |
+
plt.scatter(mkpts1[:, 0] + image0_resized.shape[1], mkpts1[:, 1], s=2, marker='o', color='g')
|
57 |
+
plt.imshow(np.hstack([image0_resized, image1_resized]), aspect='auto')
|
58 |
+
|
59 |
+
plt.suptitle('\n'.join(text), fontsize=20, fontweight='bold')
|
60 |
+
plt.tight_layout()
|
61 |
+
plt.show()
|
62 |
+
|
63 |
+
buf = BytesIO()
|
64 |
+
plt.savefig(buf, format='png')
|
65 |
+
buf.seek(0)
|
66 |
+
img_arr = np.frombuffer(buf.getvalue(), dtype=np.uint8)
|
67 |
+
buf.close()
|
68 |
+
img = cv2.imdecode(img_arr, 1)
|
69 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
70 |
+
plt.close(fig)
|
71 |
+
|
72 |
+
return img
|
73 |
+
|
74 |
+
def stitch_images(images):
|
75 |
+
"""Stitches a list of images vertically."""
|
76 |
+
if not images:
|
77 |
+
return Image.new('RGB', (100, 100), color='gray')
|
78 |
+
|
79 |
+
max_width = max([img.width for img in images])
|
80 |
+
total_height = sum(img.height for img in images)
|
81 |
+
|
82 |
+
composite = Image.new('RGB', (max_width, total_height))
|
83 |
+
|
84 |
+
y_offset = 0
|
85 |
+
for img in images:
|
86 |
+
composite.paste(img, (0, y_offset))
|
87 |
+
y_offset += img.height
|
88 |
+
|
89 |
+
return composite
|
90 |
+
|
91 |
+
# Main functions
|
92 |
+
def detect_and_crop(target_image, query_image, threshold=0.5, nms_threshold=0.3):
|
93 |
+
target_sizes = torch.Tensor([target_image.size[::-1]])
|
94 |
+
inputs = processor(images=target_image, query_images=query_image, return_tensors="pt").to(device)
|
95 |
+
with torch.no_grad():
|
96 |
+
outputs = model.image_guided_detection(**inputs)
|
97 |
+
|
98 |
+
img = cv2.cvtColor(np.array(target_image), cv2.COLOR_BGR2RGB)
|
99 |
+
outputs.logits = outputs.logits.cpu()
|
100 |
+
outputs.target_pred_boxes = outputs.target_pred_boxes.cpu()
|
101 |
+
|
102 |
+
results = processor.post_process_image_guided_detection(outputs=outputs, threshold=threshold, nms_threshold=nms_threshold, target_sizes=target_sizes)
|
103 |
+
boxes, scores = results[0]["boxes"], results[0]["scores"]
|
104 |
+
|
105 |
+
if len(boxes) == 0:
|
106 |
+
return [], None
|
107 |
+
|
108 |
+
filtered_boxes = []
|
109 |
+
for box in boxes:
|
110 |
+
x1, y1, x2, y2 = [int(i) for i in box.tolist()]
|
111 |
+
cropped_img = img[y1:y2, x1:x2]
|
112 |
+
if cropped_img.size != 0:
|
113 |
+
filtered_boxes.append(cropped_img)
|
114 |
+
|
115 |
+
draw = ImageDraw.Draw(target_image)
|
116 |
+
for box in boxes:
|
117 |
+
draw.rectangle(box.tolist(), outline="red", width=3)
|
118 |
+
|
119 |
+
return filtered_boxes, target_image
|
120 |
+
|
121 |
+
def image_matching_no_pyramid(query_img, target_img, visualize=True):
|
122 |
+
temp_query = save_array_to_temp_image(np.array(query_img))
|
123 |
+
temp_target = save_array_to_temp_image(np.array(target_img))
|
124 |
+
|
125 |
+
image1, inp1, scales1 = read_image(temp_target, device, [640*2], 0, True)
|
126 |
+
image0, inp0, scales0 = read_image(temp_query, device, [640*2], 0, True)
|
127 |
+
|
128 |
+
if image0 is None or image1 is None:
|
129 |
+
return None
|
130 |
+
|
131 |
+
pred = matching({'image0': inp0, 'image1': inp1})
|
132 |
+
pred = {k: v[0] for k, v in pred.items()}
|
133 |
+
kpts0, kpts1 = pred['keypoints0'], pred['keypoints1']
|
134 |
+
matches, conf = pred['matches0'], pred['matching_scores0']
|
135 |
+
|
136 |
+
valid = matches > -1
|
137 |
+
mkpts0 = kpts0[valid]
|
138 |
+
mkpts1 = kpts1[matches[valid]]
|
139 |
+
mconf = conf[valid]
|
140 |
+
color = cm.jet(mconf.detach().cpu().numpy())[:len(mkpts0)]
|
141 |
+
|
142 |
+
valid_count = np.sum(valid.tolist())
|
143 |
+
|
144 |
+
mkpts0_np = mkpts0.cpu().numpy()
|
145 |
+
mkpts1_np = mkpts1.cpu().numpy()
|
146 |
+
|
147 |
+
try:
|
148 |
+
H, inliers = cv2.findHomography(mkpts0_np, mkpts1_np, cv2.RANSAC, 5.0)
|
149 |
+
except:
|
150 |
+
inliers = 0
|
151 |
+
|
152 |
+
num_inliers = np.sum(inliers)
|
153 |
+
|
154 |
+
if visualize:
|
155 |
+
visualized_img = unified_matching_plot2(
|
156 |
+
image0, image1, kpts0, kpts1, mkpts0, mkpts1, color, ['Matches'], True, False, True, 'Matches', [])
|
157 |
+
else:
|
158 |
+
visualized_img = None
|
159 |
+
|
160 |
+
return {
|
161 |
+
'valid': [valid_count],
|
162 |
+
'inliers': [num_inliers],
|
163 |
+
'visualized_image': [visualized_img]
|
164 |
+
}
|
165 |
+
|
166 |
+
def check_object_in_image(query_image, target_image, threshold=50, scale_factor=[0.33, 0.66, 1]):
|
167 |
+
images_to_return = []
|
168 |
+
cropped_images, bbox_image = detect_and_crop(target_image, query_image)
|
169 |
+
|
170 |
+
temp_files = [save_array_to_temp_image(i) for i in cropped_images]
|
171 |
+
crop_results = [image_matching_no_pyramid(query_image, Image.open(i), visualize=True) for i in temp_files]
|
172 |
+
|
173 |
+
cropped_visuals = []
|
174 |
+
cropped_inliers = []
|
175 |
+
for result in crop_results:
|
176 |
+
if result:
|
177 |
+
for img in result['visualized_image']:
|
178 |
+
cropped_visuals.append(Image.fromarray(img))
|
179 |
+
for inliers_ in result['inliers']:
|
180 |
+
cropped_inliers.append(inliers_)
|
181 |
+
|
182 |
+
images_to_return.append(stitch_images(cropped_visuals))
|
183 |
+
|
184 |
+
is_present = any(value >= threshold for value in cropped_inliers)
|
185 |
+
|
186 |
+
return {
|
187 |
+
'is_present': is_present,
|
188 |
+
'image_with_boxes': bbox_image,
|
189 |
+
'object_detection_inliers': [int(i) for i in cropped_inliers],
|
190 |
+
}
|
191 |
+
|
192 |
+
def interface(poster_source, media_source, threshold, scale_factor):
|
193 |
+
result1 = check_object_in_image(poster_source, media_source, threshold, scale_factor)
|
194 |
+
if result1['is_present']:
|
195 |
+
return result1['is_present'], result1['image_with_boxes']
|
196 |
+
|
197 |
+
result2 = check_object_in_image(poster_source, media_source, threshold, scale_factor)
|
198 |
+
return result2['is_present'], result2['image_with_boxes']
|
199 |
+
|
200 |
+
iface = gr.Interface(
|
201 |
+
fn=interface,
|
202 |
+
inputs=[
|
203 |
+
gr.Image(type="pil", label="Upload a Query Image (Poster)"),
|
204 |
+
gr.Image(type="pil", label="Upload a Target Image (Media)"),
|
205 |
+
gr.Slider(minimum=0, maximum=100, step=1, value=50, label="Threshold"),
|
206 |
+
gr.CheckboxGroup(choices=["0.33", "0.66", "1.0"], value=["0.33", "0.66", "1.0"], label="Scale Factors"),
|
207 |
+
],
|
208 |
+
outputs=[
|
209 |
+
gr.Label(label="Object Presence"),
|
210 |
+
gr.Image(type="pil", label="Detected Bounding Boxes"),
|
211 |
+
],
|
212 |
+
title="Object Detection in Images",
|
213 |
+
description="""
|
214 |
+
This application allows you to check if an object in a query image (poster) is present in a target image (media).
|
215 |
+
Steps:
|
216 |
+
1. Upload a Query Image (Poster)
|
217 |
+
2. Upload a Target Image (Media)
|
218 |
+
3. Set Threshold
|
219 |
+
4. Set Scale Factors
|
220 |
+
5. View Results
|
221 |
+
"""
|
222 |
+
)
|
223 |
+
|
224 |
+
if __name__ == "__main__":
|
225 |
+
iface.launch()
|
gitattributes
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
SuperGluePretrainedNetwork/assets/freiburg_matches.gif filter=lfs diff=lfs merge=lfs -text
|
37 |
+
Samples/Images/Frame[[:space:]]13.png filter=lfs diff=lfs merge=lfs -text
|
38 |
+
Samples/Images/Frame[[:space:]]14.png filter=lfs diff=lfs merge=lfs -text
|
39 |
+
Samples/Images/Frame[[:space:]]3.png filter=lfs diff=lfs merge=lfs -text
|
40 |
+
Samples/Images/Frame[[:space:]]5.png filter=lfs diff=lfs merge=lfs -text
|
41 |
+
Samples/Images/Frame[[:space:]]6.png filter=lfs diff=lfs merge=lfs -text
|
42 |
+
Samples/Images/sub-buzz-16648-1550412154-1.png filter=lfs diff=lfs merge=lfs -text
|
43 |
+
Samples/Images/Test3.png filter=lfs diff=lfs merge=lfs -text
|
44 |
+
Samples/Poster/ForScale.png filter=lfs diff=lfs merge=lfs -text
|
45 |
+
Samples/Poster/ForScaleG.png filter=lfs diff=lfs merge=lfs -text
|
46 |
+
Samples/Poster/ForScaleM.png filter=lfs diff=lfs merge=lfs -text
|
47 |
+
Samples/Poster/ForScaleMM.png filter=lfs diff=lfs merge=lfs -text
|
48 |
+
Samples/Poster/poster_event_small.png filter=lfs diff=lfs merge=lfs -text
|
49 |
+
Samples/Poster/poster_event.png filter=lfs diff=lfs merge=lfs -text
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
transformers
|
3 |
+
torch
|
4 |
+
torchvision
|
5 |
+
numpy
|
6 |
+
Pillow
|
7 |
+
opencv-python
|
8 |
+
matplotlib
|