import gradio as gr from gtts import gTTS import speech_recognition as sr from difflib import SequenceMatcher import tempfile import os def tts(word): tts = gTTS(text=word, lang='en') temp_file_path = tempfile.mktemp(suffix=".mp3") tts.save(temp_file_path) return temp_file_path def recognize_speech_from_microphone(audio_path): recognizer = sr.Recognizer() try: with sr.AudioFile(audio_path) as source: audio_data = recognizer.record(source) text = recognizer.recognize_google(audio_data) return text except sr.UnknownValueError: return "음성을 이해할 수 없어요. 다시 말해 주세요! 🧐" except sr.RequestError as e: return f"음성 인식 서비스에 연결할 수 없어요. 😢 오류: {e}" except Exception as e: return str(e) def calculate_similarity(word, recognized_text): return SequenceMatcher(None, word.lower(), recognized_text.lower()).ratio() * 100 def process_audio(word, audio_path): recognized_text = recognize_speech_from_microphone(audio_path) if "오류" in recognized_text or "없어요" in recognized_text: return recognized_text, 0.0 similarity = calculate_similarity(word, recognized_text) return recognized_text, similarity def evaluate_pronunciation(word): temp_file_path = tts(word) return temp_file_path def process_all(word, audio_path): recognized_text, similarity = process_audio(word, audio_path) return recognized_text, similarity, audio_path with gr.Blocks(css="body {background-color: #FFFAF0; font-family: 'Comic Sans MS', cursive;} .title {font-size: 24px; text-align: center; color: #FF69B4;}") as demo: gr.Markdown("