engr-awaisjamal commited on
Commit
2e8e0c0
·
verified ·
1 Parent(s): 1ad33b7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -53
app.py CHANGED
@@ -4,16 +4,21 @@ import random
4
  from transformers import AutoTokenizer, AutoModelForCausalLM
5
  import plotly.graph_objects as go
6
 
7
- # Attempt to load the GPT-2 model
8
  try:
 
 
 
 
 
 
9
  tokenizer = AutoTokenizer.from_pretrained("gpt2")
10
  model = AutoModelForCausalLM.from_pretrained("gpt2")
11
- except ImportError as e:
12
- tokenizer = None
13
- model = None
14
- print(f"Warning: {e}. GPT-2 model won't be used in this session.")
15
 
16
- # Functionality remains the same; no GPT-2 model inference is used
17
  def analyze_energy_data(energy_data, location, language):
18
  appliances = {}
19
  total_kwh = 0
@@ -71,56 +76,13 @@ def analyze_energy_data(energy_data, location, language):
71
  savings # Return savings for ROI calculation
72
  )
73
 
74
- # Other functions remain unchanged
75
 
 
76
  def build_ui():
77
  with gr.Blocks() as demo:
78
- with gr.Row():
79
- home_size = gr.Slider(minimum=500, maximum=5000, step=100, label="Home Size (sq ft)", value=1200)
80
- location = gr.Textbox(label="Location (City)", placeholder="Enter your city...", info="Specify the city to get weather-based tips.")
81
- energy_data = gr.Textbox(
82
- label="Energy Data (Appliance: kWh)",
83
- placeholder="e.g., AC: 500 kWh\nLighting: 120 kWh\nRefrigerator: 150 kWh",
84
- lines=5,
85
- info="Enter your appliances and their energy usage."
86
- )
87
- language = gr.Radio(choices=["English", "Urdu"], label="Language")
88
-
89
- with gr.Row():
90
- user_name = gr.Textbox(label="Your Name", placeholder="Enter your name...", info="Provide your name to track performance.")
91
- reduction_percentage = gr.Slider(minimum=0, maximum=50, step=1, label="Energy Reduction (%)", value=10)
92
- initial_investment = gr.Number(label="Initial Investment (PKR)", value=10000)
93
-
94
- fetch_data_button = gr.Button("Fetch Smart Device Data")
95
- fetch_data_output = gr.Textbox(label="Smart Device Data", interactive=False)
96
-
97
- fetch_data_button.click(fetch_smart_device_data, inputs=[], outputs=fetch_data_output)
98
-
99
- submit_button = gr.Button("Analyze", variant="primary", elem_id="submit-button")
100
-
101
- with gr.Row():
102
- energy_output = gr.Textbox(label="Energy Consumption Analysis", interactive=False)
103
- tips_output = gr.Textbox(label="Optimization Tips", interactive=False)
104
- weather_output = gr.Textbox(label="Weather-specific Tips", interactive=False)
105
- alerts_output = gr.Textbox(label="Alerts", interactive=False)
106
- ai_recommendations = gr.Textbox(label="AI Recommendations", interactive=False)
107
-
108
- with gr.Row():
109
- carbon_output = gr.Textbox(label="Carbon Footprint", interactive=False)
110
- energy_chart = gr.Plot(label="Energy Visualization")
111
-
112
- with gr.Row():
113
- leaderboard_output = gr.Textbox(label="Leaderboard", interactive=False)
114
- badge_output = gr.Textbox(label="Your Badge", interactive=False)
115
-
116
- with gr.Row():
117
- roi_output = gr.Textbox(label="Return on Investment (ROI)", interactive=False)
118
-
119
- submit_button.click(
120
- chatbot_interface,
121
- inputs=[home_size, location, energy_data, language, user_name, reduction_percentage, initial_investment],
122
- outputs=[energy_output, tips_output, weather_output, alerts_output, carbon_output, ai_recommendations, energy_chart, leaderboard_output, badge_output, roi_output]
123
- )
124
 
125
  return demo
126
 
 
4
  from transformers import AutoTokenizer, AutoModelForCausalLM
5
  import plotly.graph_objects as go
6
 
7
+ # Attempt to import PyTorch
8
  try:
9
+ import torch
10
+ except ImportError:
11
+ torch = None
12
+
13
+ # Load GPT-2 model if PyTorch is available
14
+ if torch:
15
  tokenizer = AutoTokenizer.from_pretrained("gpt2")
16
  model = AutoModelForCausalLM.from_pretrained("gpt2")
17
+ else:
18
+ tokenizer, model = None, None
19
+ print("PyTorch not available. GPT-2 model will not be loaded.")
 
20
 
21
+ # Analyze energy data and provide consumption details, recommendations, and weather tips
22
  def analyze_energy_data(energy_data, location, language):
23
  appliances = {}
24
  total_kwh = 0
 
76
  savings # Return savings for ROI calculation
77
  )
78
 
79
+ # The rest of the code remains the same
80
 
81
+ # Build the Gradio UI
82
  def build_ui():
83
  with gr.Blocks() as demo:
84
+ # Your UI code
85
+ pass # Replace with the full UI code
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86
 
87
  return demo
88