engr-awaisjamal commited on
Commit
4a9ac34
·
verified ·
1 Parent(s): 8ee09ad

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +177 -0
app.py ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ import random
4
+ from transformers import AutoTokenizer, AutoModelForCausalLM
5
+ import plotly.graph_objects as go
6
+
7
+ # Load GPT-2 model from Hugging Face
8
+ tokenizer = AutoTokenizer.from_pretrained("gpt2")
9
+ model = AutoModelForCausalLM.from_pretrained("gpt2")
10
+
11
+ # Analyze energy data and provide consumption details, recommendations, and weather tips
12
+ def analyze_energy_data(energy_data, location, language):
13
+ appliances = {}
14
+ total_kwh = 0
15
+ peak_hours_rate = 20
16
+ off_peak_hours_rate = 12
17
+ benchmarks = {"AC": 400, "Refrigerator": 200, "Lighting": 150, "Fan": 100}
18
+ alerts = []
19
+
20
+ try:
21
+ for line in energy_data.strip().split("\n"):
22
+ appliance, kwh = line.split(":")
23
+ kwh_value = float(kwh.strip().split(" ")[0])
24
+ appliances[appliance.strip()] = kwh_value
25
+ total_kwh += kwh_value
26
+
27
+ if appliance.strip() in benchmarks and kwh_value > benchmarks[appliance.strip()]:
28
+ alert_message = (
29
+ f"Your {appliance.strip()} usage exceeds the limit by "
30
+ f"{kwh_value - benchmarks[appliance.strip()]:.2f} kWh."
31
+ )
32
+ alerts.append(alert_message)
33
+
34
+ except Exception:
35
+ return (
36
+ "Error: Enter data in the correct format (e.g., AC: 500 kWh).",
37
+ "",
38
+ "",
39
+ "",
40
+ "",
41
+ "",
42
+ "",
43
+ 0.0
44
+ )
45
+
46
+ total_bill = total_kwh * peak_hours_rate
47
+ optimized_bill = sum(
48
+ appliances[app] * (off_peak_hours_rate if app in ["AC", "Refrigerator"] else peak_hours_rate)
49
+ for app in appliances
50
+ )
51
+ savings = total_bill - optimized_bill
52
+ carbon_emissions = total_kwh * 0.707 # Approx kg of CO2 per kWh
53
+ weather_tips = (
54
+ f"Considering high temperatures in {location}, keep windows closed during peak heat hours to optimize cooling."
55
+ if "Lahore" in location
56
+ else "Check local weather to optimize energy usage."
57
+ )
58
+
59
+ return (
60
+ f"Your current bill is PKR {total_bill:.2f}, potentially saving PKR {savings:.2f}.",
61
+ "\n".join([f"{appliance}: {random.choice(['Use during off-peak hours.', 'Turn off when not in use.'])}" for appliance in appliances]),
62
+ weather_tips,
63
+ "\n".join(alerts),
64
+ f"Your carbon footprint: {carbon_emissions:.2f} kg of CO2. Consider using renewable energy.",
65
+ f"AI Recommendation: Optimize usage of AC and lighting based on peak hours to reduce costs and emissions.",
66
+ savings # Return savings for ROI calculation
67
+ )
68
+
69
+ # Gamification: Leaderboard and Badges
70
+ leaderboard = {"User1": 30, "User2": 25, "User3": 20}
71
+
72
+ def update_leaderboard(user_name, reduction_percentage):
73
+ leaderboard[user_name] = leaderboard.get(user_name, 0) + reduction_percentage
74
+ sorted_leaderboard = sorted(leaderboard.items(), key=lambda x: x[1], reverse=True)
75
+ leaderboard_text = "\n".join([f"{i+1}. {user}: {points} points" for i, (user, points) in enumerate(sorted_leaderboard)])
76
+ badge = "Gold" if reduction_percentage > 30 else "Silver" if reduction_percentage > 20 else "Bronze"
77
+ return leaderboard_text, f"Badge earned: {badge}"
78
+
79
+ # IoT-based Smart Device Integration (Simulated)
80
+ def fetch_smart_device_data():
81
+ data = {
82
+ "AC": random.randint(350, 500),
83
+ "Lighting": random.randint(100, 200),
84
+ "Refrigerator": random.randint(180, 250),
85
+ }
86
+ return "\n".join([f"{k}: {v} kWh" for k, v in data.items()])
87
+
88
+ # Customized Energy Visualization: Interactive Bar Chart
89
+ def visualize_energy_data(appliances):
90
+ df = pd.DataFrame(appliances.items(), columns=["Appliance", "Energy (kWh)"])
91
+ fig = go.Figure(data=[go.Bar(
92
+ x=df["Appliance"],
93
+ y=df["Energy (kWh)"],
94
+ marker=dict(color=['#FF6347' if x > 300 else '#32CD32' for x in df["Energy (kWh)"]]) # High usage appliances in red, low in green
95
+ )])
96
+ fig.update_layout(
97
+ title="Appliance-wise Energy Usage",
98
+ xaxis_title="Appliance",
99
+ yaxis_title="Energy (kWh)",
100
+ hovermode='x unified',
101
+ )
102
+ return fig
103
+
104
+ # ROI Calculator
105
+ def calculate_roi(initial_investment, savings):
106
+ try:
107
+ roi = (savings / initial_investment) * 100
108
+ except ZeroDivisionError:
109
+ roi = 0.0
110
+ return f"Your ROI is {roi:.2f}% based on an initial investment of {initial_investment} PKR and savings of {savings:.2f} PKR."
111
+
112
+ # Chatbot Interface
113
+ def chatbot_interface(home_size, location, energy_data, language, user_name, reduction_percentage, initial_investment):
114
+ energy_analysis, tips, weather_tips, alerts, carbon_output, ai_recommendation, savings = analyze_energy_data(energy_data, location, language)
115
+ appliances = {
116
+ appliance: float(kwh.strip(" kWh"))
117
+ for appliance, kwh in [line.split(":") for line in energy_data.strip().split("\n")]
118
+ }
119
+ energy_chart = visualize_energy_data(appliances)
120
+ leaderboard_text, badge = update_leaderboard(user_name, reduction_percentage)
121
+ roi_output = calculate_roi(initial_investment, savings)
122
+ return energy_analysis, tips, weather_tips, alerts, carbon_output, ai_recommendation, energy_chart, leaderboard_text, badge, roi_output
123
+
124
+ # Build UI with Gradio
125
+ def build_ui():
126
+ with gr.Blocks() as demo:
127
+ with gr.Row():
128
+ home_size = gr.Slider(minimum=500, maximum=5000, step=100, label="Home Size (sq ft)", value=1200)
129
+ location = gr.Textbox(label="Location (City)", placeholder="Enter your city...", info="Specify the city to get weather-based tips.")
130
+ energy_data = gr.Textbox(
131
+ label="Energy Data (Appliance: kWh)",
132
+ placeholder="e.g., AC: 500 kWh\nLighting: 120 kWh\nRefrigerator: 150 kWh",
133
+ lines=5,
134
+ info="Enter your appliances and their energy usage."
135
+ )
136
+ language = gr.Radio(choices=["English", "Urdu"], label="Language")
137
+
138
+ with gr.Row():
139
+ user_name = gr.Textbox(label="Your Name", placeholder="Enter your name...", info="Provide your name to track performance.")
140
+ reduction_percentage = gr.Slider(minimum=0, maximum=50, step=1, label="Energy Reduction (%)", value=10)
141
+ initial_investment = gr.Number(label="Initial Investment (PKR)", value=10000)
142
+
143
+ fetch_data_button = gr.Button("Fetch Smart Device Data")
144
+ fetch_data_output = gr.Textbox(label="Smart Device Data", interactive=False)
145
+
146
+ fetch_data_button.click(fetch_smart_device_data, inputs=[], outputs=fetch_data_output)
147
+
148
+ submit_button = gr.Button("Analyze", variant="primary", elem_id="submit-button")
149
+
150
+ with gr.Row():
151
+ energy_output = gr.Textbox(label="Energy Consumption Analysis", interactive=False)
152
+ tips_output = gr.Textbox(label="Optimization Tips", interactive=False)
153
+ weather_output = gr.Textbox(label="Weather-specific Tips", interactive=False)
154
+ alerts_output = gr.Textbox(label="Alerts", interactive=False)
155
+ ai_recommendations = gr.Textbox(label="AI Recommendations", interactive=False)
156
+
157
+ with gr.Row():
158
+ carbon_output = gr.Textbox(label="Carbon Footprint", interactive=False)
159
+ energy_chart = gr.Plot(label="Energy Visualization")
160
+
161
+ with gr.Row():
162
+ leaderboard_output = gr.Textbox(label="Leaderboard", interactive=False)
163
+ badge_output = gr.Textbox(label="Your Badge", interactive=False)
164
+
165
+ with gr.Row():
166
+ roi_output = gr.Textbox(label="Return on Investment (ROI)", interactive=False)
167
+
168
+ submit_button.click(
169
+ chatbot_interface,
170
+ inputs=[home_size, location, energy_data, language, user_name, reduction_percentage, initial_investment],
171
+ outputs=[energy_output, tips_output, weather_output, alerts_output, carbon_output, ai_recommendations, energy_chart, leaderboard_output, badge_output, roi_output]
172
+ )
173
+
174
+ return demo
175
+
176
+ demo = build_ui()
177
+ demo.launch()