Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import random
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
import plotly.graph_objects as go
|
6 |
+
|
7 |
+
# Load GPT-2 model from Hugging Face
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
9 |
+
model = AutoModelForCausalLM.from_pretrained("gpt2")
|
10 |
+
|
11 |
+
# Analyze energy data and provide consumption details, recommendations, and weather tips
|
12 |
+
def analyze_energy_data(energy_data, location, language):
|
13 |
+
appliances = {}
|
14 |
+
total_kwh = 0
|
15 |
+
peak_hours_rate = 20
|
16 |
+
off_peak_hours_rate = 12
|
17 |
+
benchmarks = {"AC": 400, "Refrigerator": 200, "Lighting": 150, "Fan": 100}
|
18 |
+
alerts = []
|
19 |
+
|
20 |
+
try:
|
21 |
+
for line in energy_data.strip().split("\n"):
|
22 |
+
appliance, kwh = line.split(":")
|
23 |
+
kwh_value = float(kwh.strip().split(" ")[0])
|
24 |
+
appliances[appliance.strip()] = kwh_value
|
25 |
+
total_kwh += kwh_value
|
26 |
+
|
27 |
+
if appliance.strip() in benchmarks and kwh_value > benchmarks[appliance.strip()]:
|
28 |
+
alert_message = (
|
29 |
+
f"Your {appliance.strip()} usage exceeds the limit by "
|
30 |
+
f"{kwh_value - benchmarks[appliance.strip()]:.2f} kWh."
|
31 |
+
)
|
32 |
+
alerts.append(alert_message)
|
33 |
+
|
34 |
+
except Exception:
|
35 |
+
return (
|
36 |
+
"Error: Enter data in the correct format (e.g., AC: 500 kWh).",
|
37 |
+
"",
|
38 |
+
"",
|
39 |
+
"",
|
40 |
+
"",
|
41 |
+
"",
|
42 |
+
"",
|
43 |
+
0.0
|
44 |
+
)
|
45 |
+
|
46 |
+
total_bill = total_kwh * peak_hours_rate
|
47 |
+
optimized_bill = sum(
|
48 |
+
appliances[app] * (off_peak_hours_rate if app in ["AC", "Refrigerator"] else peak_hours_rate)
|
49 |
+
for app in appliances
|
50 |
+
)
|
51 |
+
savings = total_bill - optimized_bill
|
52 |
+
carbon_emissions = total_kwh * 0.707 # Approx kg of CO2 per kWh
|
53 |
+
weather_tips = (
|
54 |
+
f"Considering high temperatures in {location}, keep windows closed during peak heat hours to optimize cooling."
|
55 |
+
if "Lahore" in location
|
56 |
+
else "Check local weather to optimize energy usage."
|
57 |
+
)
|
58 |
+
|
59 |
+
return (
|
60 |
+
f"Your current bill is PKR {total_bill:.2f}, potentially saving PKR {savings:.2f}.",
|
61 |
+
"\n".join([f"{appliance}: {random.choice(['Use during off-peak hours.', 'Turn off when not in use.'])}" for appliance in appliances]),
|
62 |
+
weather_tips,
|
63 |
+
"\n".join(alerts),
|
64 |
+
f"Your carbon footprint: {carbon_emissions:.2f} kg of CO2. Consider using renewable energy.",
|
65 |
+
f"AI Recommendation: Optimize usage of AC and lighting based on peak hours to reduce costs and emissions.",
|
66 |
+
savings # Return savings for ROI calculation
|
67 |
+
)
|
68 |
+
|
69 |
+
# Gamification: Leaderboard and Badges
|
70 |
+
leaderboard = {"User1": 30, "User2": 25, "User3": 20}
|
71 |
+
|
72 |
+
def update_leaderboard(user_name, reduction_percentage):
|
73 |
+
leaderboard[user_name] = leaderboard.get(user_name, 0) + reduction_percentage
|
74 |
+
sorted_leaderboard = sorted(leaderboard.items(), key=lambda x: x[1], reverse=True)
|
75 |
+
leaderboard_text = "\n".join([f"{i+1}. {user}: {points} points" for i, (user, points) in enumerate(sorted_leaderboard)])
|
76 |
+
badge = "Gold" if reduction_percentage > 30 else "Silver" if reduction_percentage > 20 else "Bronze"
|
77 |
+
return leaderboard_text, f"Badge earned: {badge}"
|
78 |
+
|
79 |
+
# IoT-based Smart Device Integration (Simulated)
|
80 |
+
def fetch_smart_device_data():
|
81 |
+
data = {
|
82 |
+
"AC": random.randint(350, 500),
|
83 |
+
"Lighting": random.randint(100, 200),
|
84 |
+
"Refrigerator": random.randint(180, 250),
|
85 |
+
}
|
86 |
+
return "\n".join([f"{k}: {v} kWh" for k, v in data.items()])
|
87 |
+
|
88 |
+
# Customized Energy Visualization: Interactive Bar Chart
|
89 |
+
def visualize_energy_data(appliances):
|
90 |
+
df = pd.DataFrame(appliances.items(), columns=["Appliance", "Energy (kWh)"])
|
91 |
+
fig = go.Figure(data=[go.Bar(
|
92 |
+
x=df["Appliance"],
|
93 |
+
y=df["Energy (kWh)"],
|
94 |
+
marker=dict(color=['#FF6347' if x > 300 else '#32CD32' for x in df["Energy (kWh)"]]) # High usage appliances in red, low in green
|
95 |
+
)])
|
96 |
+
fig.update_layout(
|
97 |
+
title="Appliance-wise Energy Usage",
|
98 |
+
xaxis_title="Appliance",
|
99 |
+
yaxis_title="Energy (kWh)",
|
100 |
+
hovermode='x unified',
|
101 |
+
)
|
102 |
+
return fig
|
103 |
+
|
104 |
+
# ROI Calculator
|
105 |
+
def calculate_roi(initial_investment, savings):
|
106 |
+
try:
|
107 |
+
roi = (savings / initial_investment) * 100
|
108 |
+
except ZeroDivisionError:
|
109 |
+
roi = 0.0
|
110 |
+
return f"Your ROI is {roi:.2f}% based on an initial investment of {initial_investment} PKR and savings of {savings:.2f} PKR."
|
111 |
+
|
112 |
+
# Chatbot Interface
|
113 |
+
def chatbot_interface(home_size, location, energy_data, language, user_name, reduction_percentage, initial_investment):
|
114 |
+
energy_analysis, tips, weather_tips, alerts, carbon_output, ai_recommendation, savings = analyze_energy_data(energy_data, location, language)
|
115 |
+
appliances = {
|
116 |
+
appliance: float(kwh.strip(" kWh"))
|
117 |
+
for appliance, kwh in [line.split(":") for line in energy_data.strip().split("\n")]
|
118 |
+
}
|
119 |
+
energy_chart = visualize_energy_data(appliances)
|
120 |
+
leaderboard_text, badge = update_leaderboard(user_name, reduction_percentage)
|
121 |
+
roi_output = calculate_roi(initial_investment, savings)
|
122 |
+
return energy_analysis, tips, weather_tips, alerts, carbon_output, ai_recommendation, energy_chart, leaderboard_text, badge, roi_output
|
123 |
+
|
124 |
+
# Build UI with Gradio
|
125 |
+
def build_ui():
|
126 |
+
with gr.Blocks() as demo:
|
127 |
+
with gr.Row():
|
128 |
+
home_size = gr.Slider(minimum=500, maximum=5000, step=100, label="Home Size (sq ft)", value=1200)
|
129 |
+
location = gr.Textbox(label="Location (City)", placeholder="Enter your city...", info="Specify the city to get weather-based tips.")
|
130 |
+
energy_data = gr.Textbox(
|
131 |
+
label="Energy Data (Appliance: kWh)",
|
132 |
+
placeholder="e.g., AC: 500 kWh\nLighting: 120 kWh\nRefrigerator: 150 kWh",
|
133 |
+
lines=5,
|
134 |
+
info="Enter your appliances and their energy usage."
|
135 |
+
)
|
136 |
+
language = gr.Radio(choices=["English", "Urdu"], label="Language")
|
137 |
+
|
138 |
+
with gr.Row():
|
139 |
+
user_name = gr.Textbox(label="Your Name", placeholder="Enter your name...", info="Provide your name to track performance.")
|
140 |
+
reduction_percentage = gr.Slider(minimum=0, maximum=50, step=1, label="Energy Reduction (%)", value=10)
|
141 |
+
initial_investment = gr.Number(label="Initial Investment (PKR)", value=10000)
|
142 |
+
|
143 |
+
fetch_data_button = gr.Button("Fetch Smart Device Data")
|
144 |
+
fetch_data_output = gr.Textbox(label="Smart Device Data", interactive=False)
|
145 |
+
|
146 |
+
fetch_data_button.click(fetch_smart_device_data, inputs=[], outputs=fetch_data_output)
|
147 |
+
|
148 |
+
submit_button = gr.Button("Analyze", variant="primary", elem_id="submit-button")
|
149 |
+
|
150 |
+
with gr.Row():
|
151 |
+
energy_output = gr.Textbox(label="Energy Consumption Analysis", interactive=False)
|
152 |
+
tips_output = gr.Textbox(label="Optimization Tips", interactive=False)
|
153 |
+
weather_output = gr.Textbox(label="Weather-specific Tips", interactive=False)
|
154 |
+
alerts_output = gr.Textbox(label="Alerts", interactive=False)
|
155 |
+
ai_recommendations = gr.Textbox(label="AI Recommendations", interactive=False)
|
156 |
+
|
157 |
+
with gr.Row():
|
158 |
+
carbon_output = gr.Textbox(label="Carbon Footprint", interactive=False)
|
159 |
+
energy_chart = gr.Plot(label="Energy Visualization")
|
160 |
+
|
161 |
+
with gr.Row():
|
162 |
+
leaderboard_output = gr.Textbox(label="Leaderboard", interactive=False)
|
163 |
+
badge_output = gr.Textbox(label="Your Badge", interactive=False)
|
164 |
+
|
165 |
+
with gr.Row():
|
166 |
+
roi_output = gr.Textbox(label="Return on Investment (ROI)", interactive=False)
|
167 |
+
|
168 |
+
submit_button.click(
|
169 |
+
chatbot_interface,
|
170 |
+
inputs=[home_size, location, energy_data, language, user_name, reduction_percentage, initial_investment],
|
171 |
+
outputs=[energy_output, tips_output, weather_output, alerts_output, carbon_output, ai_recommendations, energy_chart, leaderboard_output, badge_output, roi_output]
|
172 |
+
)
|
173 |
+
|
174 |
+
return demo
|
175 |
+
|
176 |
+
demo = build_ui()
|
177 |
+
demo.launch()
|