Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import pickle
|
4 |
+
from sklearn.model_selection import train_test_split
|
5 |
+
from sklearn.linear_model import LinearRegression
|
6 |
+
from transformers import pipeline
|
7 |
+
from PyPDF2 import PdfReader
|
8 |
+
|
9 |
+
# Helper function to load different file types
|
10 |
+
def load_file(uploaded_file):
|
11 |
+
if uploaded_file.name.endswith('.csv'):
|
12 |
+
return pd.read_csv(uploaded_file)
|
13 |
+
elif uploaded_file.name.endswith('.xlsx'):
|
14 |
+
return pd.read_excel(uploaded_file)
|
15 |
+
elif uploaded_file.name.endswith('.pdf'):
|
16 |
+
reader = PdfReader(uploaded_file)
|
17 |
+
text = ''.join(page.extract_text() for page in reader.pages)
|
18 |
+
# PDF parsing logic here (customized for table extraction)
|
19 |
+
raise NotImplementedError("PDF parsing is not implemented.")
|
20 |
+
else:
|
21 |
+
raise ValueError("Unsupported file format. Please upload CSV, Excel, or PDF.")
|
22 |
+
|
23 |
+
# Train the model if it doesn't already exist
|
24 |
+
def train_model(data):
|
25 |
+
data['Hour'] = pd.to_datetime(data['Timestamp']).dt.hour
|
26 |
+
X = data[['Hour', 'Temperature', 'CloudCover']]
|
27 |
+
y = data['SolarOutput']
|
28 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
29 |
+
model = LinearRegression()
|
30 |
+
model.fit(X_train, y_train)
|
31 |
+
with open('solar_model.pkl', 'wb') as f:
|
32 |
+
pickle.dump(model, f)
|
33 |
+
return model
|
34 |
+
|
35 |
+
# Load the trained model
|
36 |
+
def load_model():
|
37 |
+
try:
|
38 |
+
with open('solar_model.pkl', 'rb') as f:
|
39 |
+
return pickle.load(f)
|
40 |
+
except FileNotFoundError:
|
41 |
+
return None
|
42 |
+
|
43 |
+
# Initialize the text generation pipeline
|
44 |
+
generator = pipeline('text-generation', model='gpt2', device=-1)
|
45 |
+
|
46 |
+
# Streamlit app
|
47 |
+
st.title("Smart Home Energy Advisor")
|
48 |
+
|
49 |
+
# File uploader
|
50 |
+
uploaded_file = st.file_uploader("Upload your data file (CSV, Excel, or PDF)", type=['csv', 'xlsx', 'pdf'])
|
51 |
+
|
52 |
+
if uploaded_file:
|
53 |
+
# Load and preprocess data
|
54 |
+
try:
|
55 |
+
data = load_file(uploaded_file)
|
56 |
+
st.write("Data Preview:", data.head())
|
57 |
+
except Exception as e:
|
58 |
+
st.error(f"Error loading file: {e}")
|
59 |
+
data = None
|
60 |
+
|
61 |
+
if data is not None:
|
62 |
+
# Load or train the model
|
63 |
+
model = load_model()
|
64 |
+
if not model:
|
65 |
+
st.warning("No pre-trained model found. Training a new model...")
|
66 |
+
model = train_model(data)
|
67 |
+
st.success("Model trained and saved successfully!")
|
68 |
+
|
69 |
+
# Preprocess data
|
70 |
+
data['Hour'] = pd.to_datetime(data['Timestamp']).dt.hour
|
71 |
+
data['PredictedSolarOutput'] = model.predict(data[['Hour', 'Temperature', 'CloudCover']])
|
72 |
+
|
73 |
+
# Determine the best hour for maximum solar energy
|
74 |
+
best_hour = data.loc[data['PredictedSolarOutput'].idxmax(), 'Hour']
|
75 |
+
|
76 |
+
# Generate advice
|
77 |
+
advice_prompt = f"The best time to use your appliances is between {best_hour}:00 and {best_hour + 2}:00."
|
78 |
+
advice = generator(advice_prompt, max_length=50)[0]['generated_text']
|
79 |
+
|
80 |
+
# Display predictions and advice
|
81 |
+
st.subheader("Predictions")
|
82 |
+
st.write(data)
|
83 |
+
st.subheader("Recommendation")
|
84 |
+
st.write(advice)
|
85 |
+
|
86 |
+
# Chatbot feature
|
87 |
+
st.subheader("Chat with the Advisor")
|
88 |
+
user_query = st.text_input("Ask your question:")
|
89 |
+
if user_query:
|
90 |
+
chatbot_response = generator(f"User asked: {user_query}. Response:", max_length=50)[0]['generated_text']
|
91 |
+
st.write("Advisor Response:", chatbot_response)
|