engralimalik commited on
Commit
631a831
·
verified ·
1 Parent(s): a79c451

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +60 -1
app.py CHANGED
@@ -36,4 +36,63 @@ if uploaded_file is not None:
36
  # Show the categorized data
37
  st.write("Categorized Data:", df.head())
38
 
39
- #
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
  # Show the categorized data
37
  st.write("Categorized Data:", df.head())
38
 
39
+ # Visualization 1: Pie Chart of Spending by Category
40
+ category_expenses = df.groupby('Category')['Amount'].sum()
41
+
42
+ # Plot pie chart for expense distribution by category
43
+ fig1, ax1 = plt.subplots(figsize=(8, 8))
44
+ category_expenses.plot(kind='pie', autopct='%1.1f%%', startangle=90, colors=plt.cm.Paired.colors, ax=ax1)
45
+ ax1.set_title('Expense Distribution by Category')
46
+ ax1.set_ylabel('') # Hide the y-axis label
47
+ st.pyplot(fig1)
48
+
49
+ # Visualization 2: Monthly Spending Trends (Line Chart)
50
+ # Convert 'Date' to datetime
51
+ df['Date'] = pd.to_datetime(df['Date'])
52
+
53
+ # Extract month-year for grouping and convert the Period to string to avoid JSON serialization issues
54
+ df['Month'] = df['Date'].dt.to_period('M').astype(str) # Convert Period to string
55
+
56
+ # Group by month and calculate the total amount spent per month
57
+ monthly_expenses = df.groupby('Month')['Amount'].sum()
58
+
59
+ # Plot monthly spending trends as a line chart
60
+ fig2 = px.line(
61
+ monthly_expenses,
62
+ x=monthly_expenses.index,
63
+ y=monthly_expenses.values,
64
+ title="Monthly Expenses",
65
+ labels={"x": "Month", "y": "Amount ($)"}
66
+ )
67
+ st.plotly_chart(fig2)
68
+
69
+ # Budget and Alerts Example (Tracking if any category exceeds its budget)
70
+ budgets = {
71
+ "Groceries": 300,
72
+ "Rent": 1000,
73
+ "Utilities": 150,
74
+ "Entertainment": 100,
75
+ "Dining": 150,
76
+ "Transportation": 120,
77
+ }
78
+
79
+ # Track if any category exceeds its budget
80
+ df['Budget_Exceeded'] = df.apply(lambda row: row['Amount'] > budgets.get(row['Category'], 0), axis=1)
81
+
82
+ # Show which categories exceeded their budgets
83
+ exceeded_budget = df[df['Budget_Exceeded'] == True]
84
+ st.write("Categories that exceeded the budget:", exceeded_budget[['Date', 'Category', 'Amount']])
85
+
86
+ # Visualization 3: Monthly Spending vs Budget (Bar Chart)
87
+ # Create a figure explicitly for the bar chart
88
+ fig3, ax3 = plt.subplots(figsize=(10, 6)) # Create figure and axes
89
+ monthly_expenses_df = pd.DataFrame({
90
+ 'Actual': monthly_expenses,
91
+ 'Budget': [sum(budgets.values())] * len(monthly_expenses) # Same budget for simplicity
92
+ })
93
+ monthly_expenses_df.plot(kind='bar', ax=ax3) # Pass the axes to the plot
94
+ ax3.set_title('Monthly Spending vs Budget')
95
+ ax3.set_ylabel('Amount ($)')
96
+
97
+ # Display the plot with Streamlit
98
+ st.pyplot(fig3)