engrphoenix commited on
Commit
1b59b58
·
verified ·
1 Parent(s): 438afc4

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +76 -0
app.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # app.py
2
+ import os
3
+ import streamlit as st
4
+ from langchain.document_loaders import PyPDFLoader
5
+ from langchain.embeddings import HuggingFaceEmbeddings
6
+ from langchain.vectorstores import FAISS
7
+ from langchain.chains import RetrievalQA
8
+ from langchain.llms import HuggingFacePipeline
9
+ from transformers import pipeline
10
+ from groq import Groq
11
+ import requests
12
+ from PyPDF2 import PdfReader
13
+ import io
14
+
15
+ # Set up API key for Groq API
16
+ GROQ_API_KEY = "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"
17
+ os.environ["GROQ_API_KEY"] = GROQ_API_KEY
18
+
19
+ # Initialize Groq API client
20
+ client = Groq(api_key=GROQ_API_KEY)
21
+
22
+ # Predefined PDF link
23
+ pdf_url = "https://drive.google.com/file/d/1P9InkDWyaybb8jR_xS4f4KsxTlYip8RA/view?usp=drive_link"
24
+
25
+ def extract_text_from_pdf(pdf_url):
26
+ """Extract text from a PDF file given its Google Drive shared link."""
27
+ # Extract file ID from the Google Drive link
28
+ file_id = pdf_url.split('/d/')[1].split('/view')[0]
29
+ download_url = f"https://drive.google.com/uc?export=download&id={file_id}"
30
+ response = requests.get(download_url)
31
+
32
+ if response.status_code == 200:
33
+ pdf_content = io.BytesIO(response.content)
34
+ reader = PdfReader(pdf_content)
35
+ text = "\n".join([page.extract_text() for page in reader.pages])
36
+ return text
37
+ else:
38
+ st.error("Failed to download PDF.")
39
+ return ""
40
+
41
+ # Streamlit Interface
42
+ st.title("ASD Diagnosis Retrieval-Augmented Generation App")
43
+
44
+ st.info("Processing predefined PDF...")
45
+ extracted_text = extract_text_from_pdf(pdf_url)
46
+
47
+ if extracted_text:
48
+ st.success("Text extraction complete.")
49
+
50
+ # Preprocess text for embeddings
51
+ st.info("Generating embeddings...")
52
+ embeddings_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
53
+ embeddings = embeddings_model.embed_documents([extracted_text])
54
+
55
+ # Store embeddings in FAISS
56
+ st.info("Storing embeddings in FAISS...")
57
+ faiss_index = FAISS.from_texts([extracted_text], embeddings_model)
58
+
59
+ # Set up Hugging Face LLM pipeline
60
+ st.info("Setting up RAG pipeline...")
61
+ hf_pipeline = pipeline("text-generation", model="google/flan-t5-base", tokenizer="google/flan-t5-base")
62
+ llm = HuggingFacePipeline(pipeline=hf_pipeline)
63
+
64
+ retriever = faiss_index.as_retriever()
65
+ qa_chain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever)
66
+
67
+ # Query interface
68
+ st.success("RAG pipeline ready.")
69
+ user_query = st.text_input("Enter your query about ASD:")
70
+
71
+ if user_query:
72
+ st.info("Fetching response...")
73
+ response = qa_chain.run(user_query)
74
+ st.success(response)
75
+ else:
76
+ st.error("No text extracted from the PDF.")