Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,9 @@
|
|
1 |
import streamlit as st
|
2 |
-
|
3 |
-
from googletrans import Translator
|
4 |
|
5 |
-
#
|
6 |
-
|
7 |
-
|
8 |
-
try:
|
9 |
-
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-en-es")
|
10 |
-
result = translator(text, max_length=400)
|
11 |
-
return result[0]['translation_text']
|
12 |
-
except Exception as e:
|
13 |
-
st.error("Error translating text using Hugging Face. Trying Google Translate instead.")
|
14 |
-
# Fallback to Google Translate if Hugging Face fails
|
15 |
-
translator = Translator()
|
16 |
-
translated_text = translator.translate(text, dest=target_language).text
|
17 |
-
return translated_text
|
18 |
|
19 |
# Streamlit UI setup
|
20 |
st.set_page_config(page_title="AI-Powered Language Learning Assistant", page_icon="🧠", layout="wide")
|
@@ -32,40 +21,42 @@ Welcome to your AI-powered language assistant! Here you can:
|
|
32 |
text_input = st.text_input("Enter the text you want to translate or practice", "")
|
33 |
|
34 |
# Select target language for translation
|
35 |
-
language = st.selectbox("Select the language to translate to", ["
|
36 |
|
37 |
if text_input:
|
38 |
-
# Translate text
|
39 |
st.subheader(f"Original Text: {text_input}")
|
40 |
-
translated_text = translate_text(text_input,
|
41 |
|
42 |
# Display translation
|
43 |
st.markdown(f"### Translated Text to {language.upper()}:")
|
44 |
-
st.write(translated_text)
|
45 |
|
46 |
# Show pronunciation tip
|
47 |
st.subheader("Pronunciation Tip:")
|
48 |
-
st.write("Use an app like Google Translate
|
49 |
-
|
50 |
# Grammar Check (simple demo)
|
51 |
st.subheader("Grammar Feedback:")
|
52 |
-
st.write("For
|
53 |
|
54 |
# Vocabulary practice section
|
55 |
st.markdown("---")
|
56 |
st.header("Vocabulary Practice")
|
57 |
word_input = st.text_input("Enter a word to get its definition and synonyms", "")
|
58 |
if word_input:
|
59 |
-
#
|
|
|
|
|
60 |
try:
|
61 |
word_model = pipeline("fill-mask", model="bert-base-uncased") # Using BERT to predict related words
|
62 |
result = word_model(f"The synonym of {word_input} is [MASK].")
|
63 |
st.write(f"Synonyms or related words for **{word_input}**: {result}")
|
64 |
except Exception as e:
|
65 |
st.error("Error fetching vocabulary practice data.")
|
66 |
-
|
67 |
# Footer for engagement
|
68 |
st.markdown("""
|
69 |
---
|
70 |
-
**Need more practice?** Visit [
|
71 |
""")
|
|
|
1 |
import streamlit as st
|
2 |
+
import deepl # DeepL API client library
|
|
|
3 |
|
4 |
+
# Initialize the DeepL Translator with your API key
|
5 |
+
DEEPL_API_KEY = "your_deepL_api_key" # Replace with your DeepL API key
|
6 |
+
translator = deepl.Translator(DEEPL_API_KEY)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# Streamlit UI setup
|
9 |
st.set_page_config(page_title="AI-Powered Language Learning Assistant", page_icon="🧠", layout="wide")
|
|
|
21 |
text_input = st.text_input("Enter the text you want to translate or practice", "")
|
22 |
|
23 |
# Select target language for translation
|
24 |
+
language = st.selectbox("Select the language to translate to", ["ES", "FR", "DE", "IT", "PT", "RU"])
|
25 |
|
26 |
if text_input:
|
27 |
+
# Translate text using DeepL API
|
28 |
st.subheader(f"Original Text: {text_input}")
|
29 |
+
translated_text = translator.translate_text(text_input, target_lang=language)
|
30 |
|
31 |
# Display translation
|
32 |
st.markdown(f"### Translated Text to {language.upper()}:")
|
33 |
+
st.write(translated_text.text)
|
34 |
|
35 |
# Show pronunciation tip
|
36 |
st.subheader("Pronunciation Tip:")
|
37 |
+
st.write("Use an app like Forvo or Google Translate to practice pronunciation. You can also use DeepL for listening practice on the translated text.")
|
38 |
+
|
39 |
# Grammar Check (simple demo)
|
40 |
st.subheader("Grammar Feedback:")
|
41 |
+
st.write("For advanced grammar feedback, use grammar-checking tools like LanguageTool.")
|
42 |
|
43 |
# Vocabulary practice section
|
44 |
st.markdown("---")
|
45 |
st.header("Vocabulary Practice")
|
46 |
word_input = st.text_input("Enter a word to get its definition and synonyms", "")
|
47 |
if word_input:
|
48 |
+
# For vocabulary practice, let's use the Hugging Face BERT model for related words
|
49 |
+
from transformers import pipeline
|
50 |
+
|
51 |
try:
|
52 |
word_model = pipeline("fill-mask", model="bert-base-uncased") # Using BERT to predict related words
|
53 |
result = word_model(f"The synonym of {word_input} is [MASK].")
|
54 |
st.write(f"Synonyms or related words for **{word_input}**: {result}")
|
55 |
except Exception as e:
|
56 |
st.error("Error fetching vocabulary practice data.")
|
57 |
+
|
58 |
# Footer for engagement
|
59 |
st.markdown("""
|
60 |
---
|
61 |
+
**Need more practice?** Visit [DeepL](https://www.deepl.com) for real-time translations and pronunciation!
|
62 |
""")
|