File size: 4,147 Bytes
16a6662
0ffe0e0
43d5a63
6cbadc6
16a6662
 
81bc43b
21ccc58
16a6662
026bcae
 
 
 
6cbadc6
0ffe0e0
81bc43b
0ffe0e0
81bc43b
 
0ffe0e0
81bc43b
6cbadc6
 
 
 
 
16a6662
4af7e0e
6cbadc6
 
16a6662
 
 
 
 
6cbadc6
0ffe0e0
6cbadc6
 
 
 
 
 
0ffe0e0
6cbadc6
 
 
 
0ffe0e0
16a6662
4af7e0e
16a6662
 
 
 
 
0ffe0e0
16a6662
4af7e0e
16a6662
 
 
 
 
6cbadc6
 
16a6662
6cbadc6
0ffe0e0
 
6cbadc6
 
0ffe0e0
 
6cbadc6
 
 
0ffe0e0
6cbadc6
 
4af7e0e
0ffe0e0
6cbadc6
 
 
 
 
0ffe0e0
 
 
 
 
6cbadc6
 
4af7e0e
6cbadc6
 
 
 
 
 
 
48fb909
6cbadc6
 
16a6662
4af7e0e
16a6662
6cbadc6
0ffe0e0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import os
import streamlit as st
from PyPDF2  import PdfReader
import numpy as np
from groq import Groq
import faiss
import fitz

# Set up Groq API client
#groq_client = Groq(api_key="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")
def get_groq_client():
    return Groq(api_key=os.environ.get("api_key"))
    
# Function to extract text from PDF
def extract_pdf_content(pdf_file):
    doc = fitz.open(pdf_file)
    content = ""
    for page in doc:
        content += page.get_text()
    return content
    
# Function to split content into chunks
def chunk_text(text, chunk_size=500):
    words = text.split()
    return [" ".join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)]

# Function to compute embeddings using Groq's Llama3-70B-8192 model
def compute_embeddings(text_chunks):
    embeddings = []
    for chunk in text_chunks:
        response = groq_client.chat.completions.create(
            messages=[{"role": "user", "content": chunk}],
            model="llama3-70b-8192"
        )
        embeddings.append(np.array(response['choices'][0]['message']['content']))
    return np.array(embeddings)

# Function to build FAISS index
def build_faiss_index(embeddings):
    dimension = embeddings.shape[1]
    index = faiss.IndexFlatL2(dimension)  # L2 distance for similarity
    index.add(embeddings)
    return index

# Function to search in FAISS index
def search_faiss_index(index, query_embedding, text_chunks, top_k=3):
    distances, indices = index.search(query_embedding, top_k)
    return [(text_chunks[idx], distances[0][i]) for i, idx in enumerate(indices[0])]

# Function to generate professional content using Groq's Llama3-70B-8192 model
def generate_professional_content_groq(topic):
    response = groq_client.chat.completions.create(
        messages=[{"role": "user", "content": f"Explain '{topic}' in bullet points, highlighting key concepts, examples, and applications for electrical engineering students."}],
        model="llama3-70b-8192"
    )
    return response['choices'][0]['message']['content'].strip()

# Function to compute query embedding using Groq's Llama3-70B-8192 model
def compute_query_embedding(query):
    response = groq_client.chat.completions.create(
        messages=[{"role": "user", "content": query}],
        model="llama3-70b-8192"
    )
    return np.array(response['choices'][0]['message']['content']).reshape(1, -1)

# Streamlit app
st.title("Generative AI for Electrical Engineering Education with FAISS and Groq")
st.sidebar.header("AI-Based Tutor with Vector Search")

# File upload section
uploaded_file = st.sidebar.file_uploader("Upload Study Material (PDF)", type=["pdf"])
topic = st.sidebar.text_input("Enter a topic (e.g., Newton's Third Law)")

if uploaded_file:
    # Extract and process file content
    content = extract_pdf_content(uploaded_file)
    st.sidebar.success(f"{uploaded_file.name} uploaded successfully!")

    # Chunk and compute embeddings
    chunks = chunk_text(content)
    embeddings = compute_embeddings(chunks)

    # Build FAISS index
    index = build_faiss_index(embeddings)

    st.write("**File Processed and Indexed for Search**")
    st.write(f"Total chunks created: {len(chunks)}")

# Generate study material
if st.button("Generate Study Material"):
    if topic:
        st.header(f"Study Material: {topic}")
        
        # Compute query embedding
        query_embedding = compute_query_embedding(topic)

        # Search FAISS index
        if uploaded_file:
            results = search_faiss_index(index, query_embedding, chunks, top_k=3)
            st.write("**Relevant Content from Uploaded File:**")
            for result, distance in results:
                st.write(f"- {result} (Similarity: {distance:.2f})")
        else:
            st.warning("No file uploaded. Generating AI-based content instead.")
        
        # Generate content using Groq's Llama3-70B-8192 model
        ai_content = generate_professional_content_groq(topic)
        st.write("**AI-Generated Content (Groq - Llama3-70B-8192):**")
        st.write(ai_content)
    else:
        st.warning("Please enter a topic!")