Spaces:
No application file
No application file
import os | |
import streamlit as st | |
from langchain_groq import ChatGroq | |
from langchain_community.tools import ArxivQueryRun,WikipediaQueryRun,DuckDuckGoSearchRun | |
from langchain_community.utilities import WikipediaAPIWrapper,ArxivAPIWrapper | |
from langchain.agents import initialize_agent, AgentType | |
from langchain.callbacks import StreamlitCallbackHandler | |
from dotenv import load_dotenv | |
##CODE | |
## Arxiv and Wikipedia Tools | |
arxiv_wrapper=ArxivAPIWrapper(top_k_results=1, doc_content_chars_max=200) | |
arxiv=ArxivQueryRun(api_wrapper=arxiv_wrapper) | |
api_wrapper=WikipediaAPIWrapper(top_k_results=1,doc_content_chars_max=200) | |
wiki=WikipediaQueryRun(api_wrapper=api_wrapper) | |
search=DuckDuckGoSearchRun(name="Search") | |
st.title("π€ NileAI - Your AI Search Companion") | |
""" | |
Welcome to NileSearch, your AI-powered chat agent for real-time web search and insights. | |
This app uses `StreamlitCallbackHandler` to display the agent's thoughts and actions transparently. | |
Explore more LangChain π§ Streamlit Agent examples at [github.com/langchain-ai/streamlit-agent](https://github.com/langchain-ai/streamlit-agent). | |
""" | |
## Sidebar for Settings | |
# st.sidebar.title("Settings") | |
# api_key = st.sidebar.text_input("Enter your Groq API key:", type="password") | |
api_key="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" | |
if "messages" not in st.session_state: | |
st.session_state["messages"] = [ | |
{"role": "assistant", "content": "Hi! How can I assist you today?"} | |
] | |
for msg in st.session_state.messages: | |
st.chat_message(msg["role"]).write(msg["content"]) | |
if prompt:=st.chat_input(placeholder="What is machine learning?"): | |
st.session_state.messages.append({"role":"user", "content":prompt}) | |
st.chat_message("user").write(prompt) | |
llm = ChatGroq(groq_api_key=api_key, model_name="Llama3-8b-8192", streaming=True) | |
tools = [search, arxiv, wiki] | |
search_agent = initialize_agent(tools, llm, agent = AgentType.ZERO_SHOT_REACT_DESCRIPTION, handle_parsing_errors=True) | |
with st.chat_message("assistant"): | |
st_cb = StreamlitCallbackHandler(st.container(), expand_new_thoughts=False) | |
response = search_agent.run(st.session_state.messages, callbacks=[st_cb]) | |
st.session_state.messages.append({'role':'assistant', 'content':response}) | |
st.write(response) |