LLM-Search-Engine14 / search.py
ENUGANDHULA NILESH
Update search.py
12b5db9 unverified
import os
import streamlit as st
from langchain_groq import ChatGroq
from langchain_community.tools import ArxivQueryRun, WikipediaQueryRun, DuckDuckGoSearchRun
from langchain_community.utilities import WikipediaAPIWrapper, ArxivAPIWrapper
from langchain.agents import initialize_agent, AgentType
from langchain.callbacks import StreamlitCallbackHandler
from dotenv import load_dotenv
# Load environment variables from .env file
load_dotenv()
api_key = os.getenv("GROQ_API_KEY") # Get the API key from the environment variables
## Arxiv and Wikipedia Tools
arxiv_wrapper = ArxivAPIWrapper(top_k_results=1, doc_content_chars_max=200)
arxiv = ArxivQueryRun(api_wrapper=arxiv_wrapper)
api_wrapper = WikipediaAPIWrapper(top_k_results=1, doc_content_chars_max=200)
wiki = WikipediaQueryRun(api_wrapper=api_wrapper)
search = DuckDuckGoSearchRun(name="Search")
## NILESH
st.title("πŸ€– NileAI - Your AI Search Companion")
"""
Welcome to NileSearch, your AI-powered chat agent for real-time web search and insights.
This app uses `StreamlitCallbackHandler` to display the agent's thoughts and actions transparently.
Explore more LangChain 🧠 Streamlit Agent examples at [github.com/langchain-ai/streamlit-agent](https://github.com/langchain-ai/streamlit-agent).
"""
## Sidebar for Settings
# st.sidebar.title("Settings")
# api_key = st.sidebar.text_input("Enter your Groq API key:", type="password")
if "messages" not in st.session_state:
st.session_state["messages"] = [
{"role": "assistant", "content": "Hi! How can I assist you today?"}
]
for msg in st.session_state.messages:
st.chat_message(msg["role"]).write(msg["content"])
if prompt := st.chat_input(placeholder="What is machine learning?"):
st.session_state.messages.append({"role": "user", "content": prompt})
st.chat_message("user").write(prompt)
llm = ChatGroq(groq_api_key=api_key, model_name="Llama3-8b-8192", streaming=True)
tools = [search, arxiv, wiki]
search_agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, handle_parsing_errors=True)
with st.chat_message("assistant"):
st_cb = StreamlitCallbackHandler(st.container(), expand_new_thoughts=False)
response = search_agent.run(st.session_state.messages, callbacks=[st_cb])
st.session_state.messages.append({'role': 'assistant', 'content': response})
st.write(response)