import os import streamlit as st from langchain_groq import ChatGroq from langchain_community.tools import ArxivQueryRun, WikipediaQueryRun, DuckDuckGoSearchRun from langchain_community.utilities import WikipediaAPIWrapper, ArxivAPIWrapper from langchain.agents import initialize_agent, AgentType from langchain.callbacks import StreamlitCallbackHandler from dotenv import load_dotenv # Load environment variables from .env file load_dotenv() api_key = os.getenv("GROQ_API_KEY") # Get the API key from the environment variables ## Arxiv and Wikipedia Tools arxiv_wrapper = ArxivAPIWrapper(top_k_results=1, doc_content_chars_max=200) arxiv = ArxivQueryRun(api_wrapper=arxiv_wrapper) api_wrapper = WikipediaAPIWrapper(top_k_results=1, doc_content_chars_max=200) wiki = WikipediaQueryRun(api_wrapper=api_wrapper) search = DuckDuckGoSearchRun(name="Search") ## NILESH st.title("🤖 NileAI - Your AI Search Companion") """ Welcome to NileSearch, your AI-powered chat agent for real-time web search and insights. This app uses `StreamlitCallbackHandler` to display the agent's thoughts and actions transparently. Explore more LangChain 🧠 Streamlit Agent examples at [github.com/langchain-ai/streamlit-agent](https://github.com/langchain-ai/streamlit-agent). """ ## Sidebar for Settings # st.sidebar.title("Settings") # api_key = st.sidebar.text_input("Enter your Groq API key:", type="password") if "messages" not in st.session_state: st.session_state["messages"] = [ {"role": "assistant", "content": "Hi! How can I assist you today?"} ] for msg in st.session_state.messages: st.chat_message(msg["role"]).write(msg["content"]) if prompt := st.chat_input(placeholder="What is machine learning?"): st.session_state.messages.append({"role": "user", "content": prompt}) st.chat_message("user").write(prompt) llm = ChatGroq(groq_api_key=api_key, model_name="Llama3-8b-8192", streaming=True) tools = [search, arxiv, wiki] search_agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, handle_parsing_errors=True) with st.chat_message("assistant"): st_cb = StreamlitCallbackHandler(st.container(), expand_new_thoughts=False) response = search_agent.run(st.session_state.messages, callbacks=[st_cb]) st.session_state.messages.append({'role': 'assistant', 'content': response}) st.write(response)