Spaces:
Build error
Build error
Duplicate from huggingface/call-sentiment-demo
Browse filesCo-authored-by: Kunal Tangri <[email protected]>
- .gitattributes +31 -0
- Customer_Support_Call.wav +3 -0
- README.md +13 -0
- app.py +286 -0
- example_audio.wav +3 -0
- packages.txt +2 -0
- requirements.txt +10 -0
- short-take-1.wav +3 -0
- utils.py +33 -0
.gitattributes
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
29 |
+
example_audio.wav filter=lfs diff=lfs merge=lfs -text
|
30 |
+
short-take-1.wav filter=lfs diff=lfs merge=lfs -text
|
31 |
+
Customer_Support_Call.wav filter=lfs diff=lfs merge=lfs -text
|
Customer_Support_Call.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:db6489658bb04f84503531d628a67028de9d754ee0b18cf229f39deec7828001
|
3 |
+
size 31497612
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Call Sentiment Blocks 2
|
3 |
+
emoji: 🐠
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: green
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 2.9b23
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
duplicated_from: huggingface/call-sentiment-demo
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
app.py
ADDED
@@ -0,0 +1,286 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import functools
|
4 |
+
|
5 |
+
import requests
|
6 |
+
import pandas as pd
|
7 |
+
import plotly.express as px
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import gradio as gr
|
11 |
+
from transformers import pipeline, Wav2Vec2ProcessorWithLM
|
12 |
+
from pyannote.audio import Pipeline
|
13 |
+
from librosa import load, resample
|
14 |
+
from rpunct import RestorePuncts
|
15 |
+
|
16 |
+
from utils import split_into_sentences
|
17 |
+
|
18 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
19 |
+
device = 0 if torch.cuda.is_available() else -1
|
20 |
+
|
21 |
+
# summarization is done over inference API
|
22 |
+
headers = {"Authorization": f"Bearer {os.environ['HF_TOKEN']}"}
|
23 |
+
summarization_url = (
|
24 |
+
"https://api-inference.huggingface.co/models/knkarthick/MEETING_SUMMARY"
|
25 |
+
)
|
26 |
+
|
27 |
+
# There was an error related to Non-english text being detected,
|
28 |
+
# so this regular expression gets rid of any weird character.
|
29 |
+
# This might be completely unnecessary.
|
30 |
+
eng_pattern = r"[^\d\s\w'\.\,\?]"
|
31 |
+
|
32 |
+
|
33 |
+
def summarize(diarized, check):
|
34 |
+
"""
|
35 |
+
diarized: a list of tuples. Each tuple has a string to be displayed and a label for highlighting.
|
36 |
+
The start/end times are not highlighted [(speaker text, speaker id), (start time/end time, None)]
|
37 |
+
check is a list of speaker ids whose speech will get summarized
|
38 |
+
"""
|
39 |
+
|
40 |
+
if len(check) == 0:
|
41 |
+
return ""
|
42 |
+
|
43 |
+
text = ""
|
44 |
+
for d in diarized:
|
45 |
+
if len(check) == 2 and d[1] is not None:
|
46 |
+
text += f"\n{d[1]}: {d[0]}"
|
47 |
+
elif d[1] in check:
|
48 |
+
text += f"\n{d[0]}"
|
49 |
+
|
50 |
+
# inner function cached because outer function cannot be cached
|
51 |
+
@functools.lru_cache(maxsize=128)
|
52 |
+
def call_summarize_api(text):
|
53 |
+
payload = {
|
54 |
+
"inputs": text,
|
55 |
+
"options": {
|
56 |
+
"use_gpu": False,
|
57 |
+
"wait_for_model": True,
|
58 |
+
},
|
59 |
+
}
|
60 |
+
response = requests.post(summarization_url, headers=headers, json=payload)
|
61 |
+
return response.json()[0]["summary_text"]
|
62 |
+
|
63 |
+
return call_summarize_api(text)
|
64 |
+
|
65 |
+
|
66 |
+
# Audio components
|
67 |
+
asr_model = "patrickvonplaten/wav2vec2-base-960h-4-gram"
|
68 |
+
processor = Wav2Vec2ProcessorWithLM.from_pretrained(asr_model)
|
69 |
+
asr = pipeline(
|
70 |
+
"automatic-speech-recognition",
|
71 |
+
model=asr_model,
|
72 |
+
tokenizer=processor.tokenizer,
|
73 |
+
feature_extractor=processor.feature_extractor,
|
74 |
+
decoder=processor.decoder,
|
75 |
+
device=device,
|
76 |
+
)
|
77 |
+
speaker_segmentation = Pipeline.from_pretrained("pyannote/speaker-segmentation")
|
78 |
+
rpunct = RestorePuncts()
|
79 |
+
|
80 |
+
# Text components
|
81 |
+
emotion_pipeline = pipeline(
|
82 |
+
"text-classification",
|
83 |
+
model="bhadresh-savani/distilbert-base-uncased-emotion",
|
84 |
+
device=device,
|
85 |
+
)
|
86 |
+
|
87 |
+
EXAMPLES = [["example_audio.wav"], ["Customer_Support_Call.wav"]]
|
88 |
+
|
89 |
+
# display if the sentiment value is above these thresholds
|
90 |
+
thresholds = {
|
91 |
+
"joy": 0.99,
|
92 |
+
"anger": 0.95,
|
93 |
+
"surprise": 0.95,
|
94 |
+
"sadness": 0.98,
|
95 |
+
"fear": 0.95,
|
96 |
+
"love": 0.99,
|
97 |
+
}
|
98 |
+
|
99 |
+
|
100 |
+
def speech_to_text(speech):
|
101 |
+
speaker_output = speaker_segmentation(speech)
|
102 |
+
speech, sampling_rate = load(speech)
|
103 |
+
if sampling_rate != 16000:
|
104 |
+
speech = resample(speech, sampling_rate, 16000)
|
105 |
+
text = asr(speech, return_timestamps="word")
|
106 |
+
chunks = text["chunks"]
|
107 |
+
|
108 |
+
diarized_output = []
|
109 |
+
i = 0
|
110 |
+
speaker_counter = 0
|
111 |
+
|
112 |
+
# New iteration every time the speaker changes
|
113 |
+
for turn, _, _ in speaker_output.itertracks(yield_label=True):
|
114 |
+
|
115 |
+
speaker = "Customer" if speaker_counter % 2 == 0 else "Support"
|
116 |
+
diarized = ""
|
117 |
+
while i < len(chunks) and chunks[i]["timestamp"][1] <= turn.end:
|
118 |
+
diarized += chunks[i]["text"].lower() + " "
|
119 |
+
i += 1
|
120 |
+
|
121 |
+
if diarized != "":
|
122 |
+
diarized = rpunct.punctuate(re.sub(eng_pattern, "", diarized), lang="en")
|
123 |
+
|
124 |
+
diarized_output.extend(
|
125 |
+
[
|
126 |
+
(diarized, speaker),
|
127 |
+
("from {:.2f}-{:.2f}".format(turn.start, turn.end), None),
|
128 |
+
]
|
129 |
+
)
|
130 |
+
|
131 |
+
speaker_counter += 1
|
132 |
+
|
133 |
+
return diarized_output
|
134 |
+
|
135 |
+
|
136 |
+
def sentiment(diarized):
|
137 |
+
"""
|
138 |
+
diarized: a list of tuples. Each tuple has a string to be displayed and a label for highlighting.
|
139 |
+
The start/end times are not highlighted [(speaker text, speaker id), (start time/end time, None)]
|
140 |
+
|
141 |
+
This function gets the customer's sentiment and returns a list for highlighted text as well
|
142 |
+
as a plot of sentiment over time.
|
143 |
+
"""
|
144 |
+
|
145 |
+
customer_sentiments = []
|
146 |
+
|
147 |
+
to_plot = []
|
148 |
+
plot_sentences = []
|
149 |
+
|
150 |
+
# used to set the x range of ticks on the plot
|
151 |
+
x_min = 100
|
152 |
+
x_max = 0
|
153 |
+
|
154 |
+
for i in range(0, len(diarized), 2):
|
155 |
+
speaker_speech, speaker_id = diarized[i]
|
156 |
+
times, _ = diarized[i + 1]
|
157 |
+
|
158 |
+
sentences = split_into_sentences(speaker_speech)
|
159 |
+
start_time, end_time = times[5:].split("-")
|
160 |
+
start_time, end_time = float(start_time), float(end_time)
|
161 |
+
interval_size = (end_time - start_time) / len(sentences)
|
162 |
+
|
163 |
+
if "Customer" in speaker_id:
|
164 |
+
|
165 |
+
outputs = emotion_pipeline(sentences)
|
166 |
+
|
167 |
+
for idx, (o, t) in enumerate(zip(outputs, sentences)):
|
168 |
+
sent = "neutral"
|
169 |
+
if o["score"] > thresholds[o["label"]]:
|
170 |
+
customer_sentiments.append(
|
171 |
+
(t + f"({round(idx*interval_size+start_time,1)} s)", o["label"])
|
172 |
+
)
|
173 |
+
if o["label"] in {"joy", "love", "surprise"}:
|
174 |
+
sent = "positive"
|
175 |
+
elif o["label"] in {"sadness", "anger", "fear"}:
|
176 |
+
sent = "negative"
|
177 |
+
if sent != "neutral":
|
178 |
+
to_plot.append((start_time + idx * interval_size, sent))
|
179 |
+
plot_sentences.append(t)
|
180 |
+
|
181 |
+
if start_time < x_min:
|
182 |
+
x_min = start_time
|
183 |
+
if end_time > x_max:
|
184 |
+
x_max = end_time
|
185 |
+
|
186 |
+
x_min -= 5
|
187 |
+
x_max += 5
|
188 |
+
|
189 |
+
x, y = list(zip(*to_plot))
|
190 |
+
|
191 |
+
plot_df = pd.DataFrame(
|
192 |
+
data={
|
193 |
+
"x": x,
|
194 |
+
"y": y,
|
195 |
+
"sentence": plot_sentences,
|
196 |
+
}
|
197 |
+
)
|
198 |
+
|
199 |
+
fig = px.line(
|
200 |
+
plot_df,
|
201 |
+
x="x",
|
202 |
+
y="y",
|
203 |
+
hover_data={
|
204 |
+
"sentence": True,
|
205 |
+
"x": True,
|
206 |
+
"y": False,
|
207 |
+
},
|
208 |
+
labels={"x": "time (seconds)", "y": "sentiment"},
|
209 |
+
title=f"Customer sentiment over time",
|
210 |
+
)
|
211 |
+
|
212 |
+
fig = fig.update_yaxes(categoryorder="category ascending")
|
213 |
+
fig = fig.update_layout(
|
214 |
+
font=dict(
|
215 |
+
size=18,
|
216 |
+
),
|
217 |
+
xaxis_range=[x_min, x_max],
|
218 |
+
)
|
219 |
+
|
220 |
+
return customer_sentiments, fig
|
221 |
+
|
222 |
+
|
223 |
+
demo = gr.Blocks(enable_queue=True)
|
224 |
+
demo.encrypt = False
|
225 |
+
|
226 |
+
# for highlighting purposes
|
227 |
+
color_map = {
|
228 |
+
"joy": "green",
|
229 |
+
"anger": "red",
|
230 |
+
"surprise": "yellow",
|
231 |
+
"sadness": "blue",
|
232 |
+
"fear": "orange",
|
233 |
+
"love": "purple",
|
234 |
+
}
|
235 |
+
|
236 |
+
with demo:
|
237 |
+
with gr.Row():
|
238 |
+
with gr.Column():
|
239 |
+
audio = gr.Audio(label="Audio file", type="filepath")
|
240 |
+
with gr.Row():
|
241 |
+
btn = gr.Button("Transcribe")
|
242 |
+
with gr.Row():
|
243 |
+
examples = gr.components.Dataset(
|
244 |
+
components=[audio], samples=EXAMPLES, type="index"
|
245 |
+
)
|
246 |
+
with gr.Column():
|
247 |
+
gr.Markdown("**Call Transcript:**")
|
248 |
+
diarized = gr.HighlightedText(label="Call Transcript")
|
249 |
+
gr.Markdown("Choose speaker to summarize:")
|
250 |
+
check = gr.CheckboxGroup(
|
251 |
+
choices=["Customer", "Support"], show_label=False, type="value"
|
252 |
+
)
|
253 |
+
summary = gr.Textbox(lines=4)
|
254 |
+
sentiment_btn = gr.Button("Get Customer Sentiment")
|
255 |
+
analyzed = gr.HighlightedText(color_map=color_map)
|
256 |
+
plot = gr.Plot(label="Sentiment over time", type="plotly")
|
257 |
+
|
258 |
+
# when example button is clicked, convert audio file to text and diarize
|
259 |
+
btn.click(
|
260 |
+
speech_to_text,
|
261 |
+
audio,
|
262 |
+
[diarized],
|
263 |
+
status_tracker=gr.StatusTracker(cover_container=True),
|
264 |
+
)
|
265 |
+
# when summarize checkboxes are changed, create summary
|
266 |
+
check.change(summarize, [diarized, check], summary)
|
267 |
+
|
268 |
+
# when sentiment button clicked, display highlighted text and plot
|
269 |
+
sentiment_btn.click(sentiment, [diarized], [analyzed, plot])
|
270 |
+
|
271 |
+
|
272 |
+
def cache_example(example):
|
273 |
+
processed_examples = audio.preprocess_example(example)
|
274 |
+
diarized_output = speech_to_text(example)
|
275 |
+
return processed_examples, diarized_output
|
276 |
+
|
277 |
+
cache = [cache_example(e[0]) for e in EXAMPLES]
|
278 |
+
|
279 |
+
def load_example(example_id):
|
280 |
+
return cache[example_id]
|
281 |
+
|
282 |
+
examples._click_no_postprocess(
|
283 |
+
load_example, inputs=[examples], outputs=[audio, diarized], queue=False
|
284 |
+
)
|
285 |
+
|
286 |
+
demo.launch(debug=1)
|
example_audio.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:43166418f743e61807c7681944bf344c4720924adb4e5879dfa954dc7ecc82b2
|
3 |
+
size 3202638
|
packages.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
libsndfile1
|
2 |
+
ffmpeg
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
librosa
|
4 |
+
pyctcdecode
|
5 |
+
pypi-kenlm
|
6 |
+
git+https://github.com/ktangri/rpunct.git
|
7 |
+
https://github.com/pyannote/pyannote-audio/archive/develop.zip
|
8 |
+
requests
|
9 |
+
speechbrain
|
10 |
+
plotly
|
short-take-1.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bf15193510fc5a5680fdfdffda6c7cc5b8595bdde3d267b9ef5223e62035a952
|
3 |
+
size 20079500
|
utils.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
alphabets= "([A-Za-z])"
|
3 |
+
prefixes = "(Mr|St|Mrs|Ms|Dr)[.]"
|
4 |
+
suffixes = "(Inc|Ltd|Jr|Sr|Co)"
|
5 |
+
starters = "(Mr|Mrs|Ms|Dr|He\s|She\s|It\s|They\s|Their\s|Our\s|We\s|But\s|However\s|That\s|This\s|Wherever)"
|
6 |
+
acronyms = "([A-Z][.][A-Z][.](?:[A-Z][.])?)"
|
7 |
+
websites = "[.](com|net|org|io|gov)"
|
8 |
+
|
9 |
+
def split_into_sentences(text):
|
10 |
+
text = " " + text + " "
|
11 |
+
text = text.replace("\n"," ")
|
12 |
+
text = re.sub(prefixes,"\\1<prd>",text)
|
13 |
+
text = re.sub(websites,"<prd>\\1",text)
|
14 |
+
if "Ph.D" in text: text = text.replace("Ph.D.","Ph<prd>D<prd>")
|
15 |
+
text = re.sub("\s" + alphabets + "[.] "," \\1<prd> ",text)
|
16 |
+
text = re.sub(acronyms+" "+starters,"\\1<stop> \\2",text)
|
17 |
+
text = re.sub(alphabets + "[.]" + alphabets + "[.]" + alphabets + "[.]","\\1<prd>\\2<prd>\\3<prd>",text)
|
18 |
+
text = re.sub(alphabets + "[.]" + alphabets + "[.]","\\1<prd>\\2<prd>",text)
|
19 |
+
text = re.sub(" "+suffixes+"[.] "+starters," \\1<stop> \\2",text)
|
20 |
+
text = re.sub(" "+suffixes+"[.]"," \\1<prd>",text)
|
21 |
+
text = re.sub(" " + alphabets + "[.]"," \\1<prd>",text)
|
22 |
+
if "”" in text: text = text.replace(".”","”.")
|
23 |
+
if "\"" in text: text = text.replace(".\"","\".")
|
24 |
+
if "!" in text: text = text.replace("!\"","\"!")
|
25 |
+
if "?" in text: text = text.replace("?\"","\"?")
|
26 |
+
text = text.replace(".",".<stop>")
|
27 |
+
text = text.replace("?","?<stop>")
|
28 |
+
text = text.replace("!","!<stop>")
|
29 |
+
text = text.replace("<prd>",".")
|
30 |
+
sentences = text.split("<stop>")
|
31 |
+
sentences = sentences[:-1]
|
32 |
+
sentences = [s.strip() for s in sentences]
|
33 |
+
return sentences
|