Spaces:
Running
Running
File size: 1,578 Bytes
c022a81 45060c1 c022a81 45060c1 c022a81 45060c1 c022a81 45060c1 c022a81 45060c1 c022a81 45060c1 c022a81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load model directly
tokenizer = AutoTokenizer.from_pretrained("Leo022/Gemma_QA_For_Telegram_Bot")
model = AutoModelForCausalLM.from_pretrained("Leo022/Gemma_QA_For_Telegram_Bot")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
input_ids = tokenizer.encode(messages, return_tensors="pt")
output = model.generate(
input_ids,
max_length=max_tokens,
temperature=temperature,
top_p=top_p,
do_sample=True,
)
response = tokenizer.decode(output[0], skip_special_tokens=True)
return response
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch() |