groqqq / app.py
enotkrutoy's picture
Update app.py
6b07d33 verified
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("Leo022/Gemma_QA_For_Telegram_Bot")
model = AutoModelForCausalLM.from_pretrained("Leo022/Gemma_QA_For_Telegram_Bot")
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
"""
Function to generate response from the model.
Args:
message (str): The user's input message.
history (list): The conversation history.
system_message (str): The system message.
max_tokens (int): Maximum number of tokens for output.
temperature (float): Sampling temperature.
top_p (float): Nucleus sampling parameter.
Returns:
str: The model's response.
"""
# Initialize messages list with the system message
messages = [{"role": "system", "content": system_message}]
# Add conversation history to messages
for user_msg, assistant_msg in history:
if user_msg:
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
# Append the latest user message
messages.append({"role": "user", "content": message})
# Encode the concatenation of all message contents
input_ids = tokenizer.encode(" ".join([msg["content"] for msg in messages]), return_tensors="pt")
# Generate response
output = model.generate(
input_ids,
max_length=max_tokens,
temperature=temperature,
top_p=top_p,
do_sample=True,
)
# Decode the generated tokens to get the response text
response = tokenizer.decode(output[0], skip_special_tokens=True)
return response
# Define the Gradio interface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
)
if __name__ == "__main__":
# Launch the Gradio app
demo.launch()