Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
# Load model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("Leo022/Gemma_QA_For_Telegram_Bot") | |
model = AutoModelForCausalLM.from_pretrained("Leo022/Gemma_QA_For_Telegram_Bot") | |
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p): | |
""" | |
Function to generate response from the model. | |
Args: | |
message (str): The user's input message. | |
history (list): The conversation history. | |
system_message (str): The system message. | |
max_tokens (int): Maximum number of tokens for output. | |
temperature (float): Sampling temperature. | |
top_p (float): Nucleus sampling parameter. | |
Returns: | |
str: The model's response. | |
""" | |
# Initialize messages list with the system message | |
messages = [{"role": "system", "content": system_message}] | |
# Add conversation history to messages | |
for user_msg, assistant_msg in history: | |
if user_msg: | |
messages.append({"role": "user", "content": user_msg}) | |
if assistant_msg: | |
messages.append({"role": "assistant", "content": assistant_msg}) | |
# Append the latest user message | |
messages.append({"role": "user", "content": message}) | |
# Encode the concatenation of all message contents | |
input_ids = tokenizer.encode(" ".join([msg["content"] for msg in messages]), return_tensors="pt") | |
# Generate response | |
output = model.generate( | |
input_ids, | |
max_length=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
do_sample=True, | |
) | |
# Decode the generated tokens to get the response text | |
response = tokenizer.decode(output[0], skip_special_tokens=True) | |
return response | |
# Define the Gradio interface | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
], | |
) | |
if __name__ == "__main__": | |
# Launch the Gradio app | |
demo.launch() |