import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM # Load model and tokenizer tokenizer = AutoTokenizer.from_pretrained("Leo022/Gemma_QA_For_Telegram_Bot") model = AutoModelForCausalLM.from_pretrained("Leo022/Gemma_QA_For_Telegram_Bot") def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p): """ Function to generate response from the model. Args: message (str): The user's input message. history (list): The conversation history. system_message (str): The system message. max_tokens (int): Maximum number of tokens for output. temperature (float): Sampling temperature. top_p (float): Nucleus sampling parameter. Returns: str: The model's response. """ # Initialize messages list with the system message messages = [{"role": "system", "content": system_message}] # Add conversation history to messages for user_msg, assistant_msg in history: if user_msg: messages.append({"role": "user", "content": user_msg}) if assistant_msg: messages.append({"role": "assistant", "content": assistant_msg}) # Append the latest user message messages.append({"role": "user", "content": message}) # Encode the concatenation of all message contents input_ids = tokenizer.encode(" ".join([msg["content"] for msg in messages]), return_tensors="pt") # Generate response output = model.generate( input_ids, max_length=max_tokens, temperature=temperature, top_p=top_p, do_sample=True, ) # Decode the generated tokens to get the response text response = tokenizer.decode(output[0], skip_special_tokens=True) return response # Define the Gradio interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) if __name__ == "__main__": # Launch the Gradio app demo.launch()