enzer1992 commited on
Commit
e0a8fce
·
verified ·
1 Parent(s): ca2edf7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +27 -37
app.py CHANGED
@@ -1,39 +1,29 @@
1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
- from llamafactory.chat import ChatModel
4
- import gradio as gr
5
-
6
- # Step 1: Load your model
7
- args = dict(
8
- model_name_or_path="unsloth/llama-3-8b-Instruct-bnb-4bit",
9
- adapter_name_or_path="enzer1992/AI-Guru",
10
- template="llama3",
11
- finetuning_type="lora",
12
- quantization_bit=4,
13
- )
14
-
15
- chat_model = ChatModel(args)
16
-
17
- # Force the model to CPU
18
- device = torch.device("cpu")
19
- chat_model.model.to(device)
20
-
21
- # Step 2: Create a function for chatting
22
- def chat(user_input, history):
23
- messages = history + [{"role": "user", "content": user_input}]
24
- response = ""
25
- for new_text in chat_model.stream_chat(messages):
26
- response += new_text
27
- history.append({"role": "user", "content": user_input})
28
- history.append({"role": "assistant", "content": response})
29
- return response, history
30
-
31
- # Step 3: Create a simple interface
32
- iface = gr.Interface(
33
- fn=chat,
34
- inputs=[gr.Textbox(label="Your Message"), gr.State()],
35
- outputs=[gr.Textbox(label="AI Response"), gr.State()],
36
- title="AI Guru Chatbot"
37
- )
38
-
39
- iface.launch()
 
1
 
2
+ from transformers import AutoProcessor, AutoModelForImageTextToText
3
+
4
+ # Step 1: Load the model and processor from Hugging Face
5
+ processor = AutoProcessor.from_pretrained("enzer1992/AI-Guru")
6
+ model = AutoModelForImageTextToText.from_pretrained("enzer1992/AI-Guru")
7
+
8
+ # Step 2: Function to interact with the model
9
+ def chat_with_model(input_text):
10
+ # Process the input text
11
+ inputs = processor(input_text, return_tensors="pt")
12
+
13
+ # Generate the model's response
14
+ outputs = model.generate(**inputs)
15
+
16
+ # Decode and return the response
17
+ response = processor.decode(outputs[0], skip_special_tokens=True)
18
+ return response
19
+
20
+ # Step 3: Chat loop
21
+ print("Chat with the model! Type 'exit' to end.")
22
+ while True:
23
+ user_input = input("You: ")
24
+ if user_input.lower() == "exit":
25
+ break
26
+
27
+ response = chat_with_model(user_input)
28
+ print(f"Model: {response}")
29