File size: 2,603 Bytes
f87ab8f
bb57e06
f87ab8f
 
 
93bdb59
 
 
cd6c73f
 
 
e197a87
93bdb59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f87ab8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93bdb59
f87ab8f
 
 
 
 
 
e197a87
f87ab8f
 
 
 
e197a87
f87ab8f
 
 
 
 
 
 
 
 
 
 
 
 
 
e197a87
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import gradio as gr
import base64
from gpt_reader.pdf_reader import PaperReader
from gpt_reader.prompt import BASE_POINTS

import base64
import streamlit as st

with open("./logo.png", "rb") as f:
    image_data = f.read()
    image_base64 = base64.b64encode(image_data).decode("utf-8")

# Define the custom CSS styles
header_css = """
<style>
.header img {
    margin-right: 10px;
    width: 80px;
    height: 50px;
}

.header p {
    font-size: 14px;
}
</style>
"""

# Render the custom CSS
st.markdown(header_css, unsafe_allow_html=True)

# Render the header
header_html = f"""
<div class="header">
    <img src='data:image/png;base64,{image_base64}' alt="Logo"/>
    <p>Disclaimer: This web app is for demonstration purposes only and not intended for commercial use. Contact: [email protected] for full solution.</p>
</div>
"""

# Render the header HTML
st.markdown(header_html, unsafe_allow_html=True)


class GUI:
    def __init__(self):
        self.api_key = ""
        self.session = ""

    def analyse(self, api_key, pdf_file):
        self.session = PaperReader(api_key, points_to_focus=BASE_POINTS)
        return self.session.read_pdf_and_summarize(pdf_file)

    def ask_question(self, question):
        if self.session == "":
            return "Please upload PDF file first!"
        return self.session.question(question)


with gr.Blocks() as demo:
    

    with gr.Tab("Upload PDF File"):
        pdf_input = gr.File(label="PDF File")
        api_input = gr.Textbox(label="OpenAI API Key")
        result = gr.Textbox(label="PDF Summary")
        upload_button = gr.Button("Start Analyse")

    with gr.Tab("Ask question about your PDF"):
        question_input = gr.Textbox(label="Your Question", placeholder="Authors of this paper?")
        answer = gr.Textbox(label="Answer")
        ask_button = gr.Button("Ask")

    with gr.Accordion("About this project"):
        gr.Markdown(
            """## CHATGPT-PAPER-READER📝 
            This repository provides a simple interface that utilizes the gpt-3.5-turbo 
            model to read academic papers in PDF format locally. You can use it to help you summarize papers, 
            create presentation slides, or simply fulfill tasks assigned by your supervisor.\n 
            [Github](https://github.com/talkingwallace/ChatGPT-Paper-Reader)""")

    app = GUI()
    upload_button.click(fn=app.analyse, inputs=[api_input, pdf_input], outputs=result)
    ask_button.click(app.ask_question, inputs=question_input, outputs=answer)

if __name__ == "__main__":
    demo.title = "CHATGPT-PAPER-READER"
    demo.launch()