|
import gradio as gr |
|
import base64 |
|
from fastai.vision.all import * |
|
|
|
learn=load_learner('export.pkl') |
|
|
|
labels = learn.dls.vocab |
|
def predict(img): |
|
img = PILImage.create(img) |
|
pred,pred_idx,probs = learn.predict(img) |
|
return {labels[i]: float(probs[i]) for i in range(len(labels))} |
|
|
|
|
|
with open("./1001epochs.png", "rb") as f: |
|
image_data = f.read() |
|
image_base64 = base64.b64encode(image_data).decode("utf-8") |
|
|
|
allow_flagging = "never" |
|
|
|
title = f""" |
|
<h2 style="background-image: linear-gradient(to right, #3A5FCD, #87CEFA); -webkit-background-clip: text; |
|
-webkit-text-fill-color: transparent; text-align: center;"> |
|
Emergency Vehicle Classifier |
|
</h2> |
|
""" |
|
|
|
description = f""" |
|
<div style="display: flex; align-items: center; justify-content: center; flex-direction: column;"> |
|
<p style="font-size: 18px; color: #4AAAFF; text-align: center;"> |
|
Simply upload a photo and let our sophisticated AI system determine the specific type of emergency vehicle depicted. |
|
</p> |
|
<div style="display: flex; align-items: center; margin-bottom: 0px;"> |
|
<img src='data:image/jpeg;base64,{image_base64}' width='50' height='30' style="margin-right: 5px;"/> |
|
<p style="font-size: 14px; color: #555;"> |
|
Disclaimer: The purpose of this application is solely for demonstration. 1001epochs does not claim ownership for the results. Contact: [email protected] for full solution. |
|
</p> |
|
</div> |
|
</div> |
|
""" |
|
|
|
interpretation='default' |
|
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(512, 512)), outputs=gr.outputs.Label(num_top_classes=3), title=title, interpretation=interpretation, description=description).launch() |