epochs-demos commited on
Commit
1100ac6
Β·
1 Parent(s): a956429

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -2
app.py CHANGED
@@ -7,6 +7,34 @@ def predict(img):
7
  img = PILImage.create(img)
8
  pred,pred_idx,probs = learn.predict(img)
9
  return {labels[i]: float(probs[i]) for i in range(len(labels))}
10
- title='Emergency Vehicle Classifier'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  interpretation='default'
12
- gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(512, 512)), outputs=gr.outputs.Label(num_top_classes=3), title=title, interpretation=interpretation).launch(share=True)
 
7
  img = PILImage.create(img)
8
  pred,pred_idx,probs = learn.predict(img)
9
  return {labels[i]: float(probs[i]) for i in range(len(labels))}
10
+
11
+ # Read the image file and encode it as base64
12
+ with open("./1001epochs.png", "rb") as f:
13
+ image_data = f.read()
14
+ image_base64 = base64.b64encode(image_data).decode("utf-8")
15
+
16
+ allow_flagging = "never"
17
+
18
+ title = f"""
19
+ <h2 style="background-image: linear-gradient(to right, #3A5FCD, #87CEFA); -webkit-background-clip: text;
20
+ -webkit-text-fill-color: transparent; text-align: center;">
21
+ Emergency Vehicle Classifier
22
+ </h2>
23
+ """
24
+
25
+ description = f"""
26
+ <div style="display: flex; align-items: center; justify-content: center; flex-direction: column;">
27
+ <p style="font-size: 18px; color: #4AAAFF; text-align: center;">
28
+ Simply upload a photo and let our sophisticated AI system determine the specific type of emergency vehicle depicted.
29
+ </p>
30
+ <div style="display: flex; align-items: center; margin-bottom: 0px;">
31
+ <img src='data:image/jpeg;base64,{image_base64}' width='50' height='30' style="margin-right: 5px;"/>
32
+ <p style="font-size: 14px; color: #555;">
33
+ Disclaimer: This web app is for demonstration purposes only and not intended for commercial use. Contact: [email protected] for full solution.
34
+ </p>
35
+ </div>
36
+ </div>
37
+ """
38
+
39
  interpretation='default'
40
+ gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(512, 512)), outputs=gr.outputs.Label(num_top_classes=3), title=title, interpretation=interpretation, description=description).launch()