File size: 13,555 Bytes
d73ff04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
#Importing all the necessary needed  libraries
import torch
import requests
import numpy as np
import pandas as pd
import gradio as gr
from io import BytesIO
from PIL import Image as PILIMAGE
from IPython.display import Image
from IPython.core.display import HTML
from transformers import CLIPProcessor, CLIPModel, CLIPTokenizer
from sentence_transformers import SentenceTransformer, util
import os
import json
import requests
import langchain
from tqdm import tqdm
from langchain.text_splitter import CharacterTextSplitter
images = [] 
prompt_templates = {"DefaultChatGPT": ""}
# Streaming endpoint
API_URL = "https://api.openai.com/v1/chat/completions"  # os.getenv("API_URL") + "/generate_stream"
convo_id = 'default'
#5c72c157a8fd54357bd13112cd71952a
import time
images1= pd.read_csv("./images.csv")

openai_api_key='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'
m=0
style1= pd.read_csv('./stylesu.csv')
feature_info= list(style1.columns)
feature_info = ' '.join([str(elem) for elem in feature_info])
info= style1.values.tolist()
final_info=''
for i in info:
    li=''
    li=' '.join([str(elem) for elem in i])
    final_info += li+'\n'



def on_prompt_template_change(prompt_template):
    if not isinstance(prompt_template, str): return
    if prompt_template:
        return prompt_templates[prompt_template]
    else:
        ''

def get_empty_state():
    return {"total_tokens": 0, "messages": []}

def get_prompt_templates():
    with open('./prompts.json','r',encoding='utf8') as fp:
        json_data = json.load(fp)
        for data in json_data:
            act = data['act']
            prompt = data['prompt']
            prompt_templates[act] = prompt
        # reader = csv.reader(csv_file)
        # next(reader)  # skip the header row
        # for row in reader:
        #     if len(row) >= 2:
        #         act = row[0].strip('"')
        #         prompt = row[1].strip('"')
        #         prompt_templates[act] = prompt

        choices = list(prompt_templates.keys())
        choices = choices[:1] + sorted(choices[1:])
        return gr.update(value=choices[0], choices=choices)



def run(pr=gr.Progress(track_tqdm=True)):
    #if(chat_counter==0):
    message_prompt=[]
    x=len(final_info)
    print(x/2000)
    for i in range(0,x,2000): #final_texts:
        message_prompt.append(final_info[i:i+2000]+" Remember this along with previous prompts as it makes up the csv file")
            #//there
    prompt_template = "I want you to act as a Product recommender and read the CSV file I will provide you. I need you to thoroughly review the CSV file and give recommendations based on the input afterward. You should recommend me the product by displaying its id, and description. The csv features are:" +feature_info+ "The csv information is as follows:"
    payload = {
                    "model": "gpt-3.5-turbo",
                    "messages": [{"role":"system", "content":prompt_template}],
                    "temperature": 0.1,
                    "top_p": 1.0,
                    "n": 1,
                    "stream": True,
                    "presence_penalty": 0,
                    "frequency_penalty": 0,
                }
            
    headers = {
                    "Content-Type": "application/json",
                    "Authorization": f"Bearer {openai_api_key}"
                }
    response = requests.post(API_URL, headers=headers, json=payload, stream=True)
          
    for i in pr.tqdm(message_prompt):
        payload = {
                    "model": "gpt-3.5-turbo",
                    "messages": [{"role":"system", "content":i}],
                    "temperature": 0.1,
                    "top_p": 1.0,
                    "n": 1,
                    "stream": True,
                    "presence_penalty": 0,
                    "frequency_penalty": 0, }
        response = requests.post(API_URL, headers=headers, json=payload, stream=True)
        time.sleep(0.01)
        pr(1/2210)

    print("completed")
    
def predict(inputs, prompt_template, temperature, openai_api_key, chat_counter, context_length, chatbot=[],
            history=[]):

 # # repetition_penalty, top_k
    if inputs==None:
        inputs = ''
    prompt_template = "I want you to act as a Product recommender and read the CSV file I will provide you. I need you to thoroughly review the CSV file and give recommendations based on the input afterward. You should recommend me the product by displaying its id, and description. The csv features are:" +feature_info+ "The csv information is as follows:"
        
    headers = {
                    "Content-Type": "application/json",
                    "Authorization": f"Bearer {openai_api_key}"
                }    
    payload = {
        "model": "gpt-3.5-turbo",
        "messages": [{"role": "user", "content": f"{inputs}"}],
        "temperature": 0.1,
        "top_p": 1.0,
        "n": 1,
        "stream": True,
        "presence_penalty": 0,
        "frequency_penalty": 0,
    }
    
        
        
                # print(f"chat_counter - {chat_counter}")
    if chat_counter != 0:
        messages = []
        # print(chatbot)
        # print(chatbot[-context_length:])
        # print(context_length)
        for data in chatbot[-context_length:]:
            temp1 = {}
            temp1["role"] = "user"
            temp1["content"] = data[0]
            temp2 = {}
            temp2["role"] = "assistant"
            temp2["content"] = data[1]
            messages.append(temp1)
            messages.append(temp2)
        temp3 = {}
        temp3["role"] = "user"
        temp3["content"] = inputs
        messages.append(temp3)
        # print(messages)
        # messages
        payload = {
            "model": "gpt-3.5-turbo",
            "messages": [{"role": "system", "content": prompt_template}]+messages,  # [{"role": "user", "content": f"{inputs}"}],
            "temperature": temperature,  # 1.0,
            "n": 1,
            "stream": True,
            "presence_penalty": 0,
            "frequency_penalty": 0,
        }



    history.append(inputs)
    # print(f"payload is - {payload}")
    # make a POST request to the API endpoint using the requests.post method, passing in stream=True
    # print('payload',payload)
    response = requests.post(API_URL, headers=headers, json=payload, stream=True)

    # print('response', response)
    # print('content',response.content)
    # print('text', response.text)
    if response.status_code != 200:
        try:
            payload['id'] = response.content['id']
            response = requests.post(API_URL, headers=headers, json=payload, stream=True)
            if response.status_code != 200:
                payload['id'] = response.content['id']
                response = requests.post(API_URL, headers=headers, json=payload, stream=True)
        except:
            pass

    # print('status_code', response.status_code)
    # response = requests.post(API_URL, headers=headers, json=payload, stream=True)
    token_counter = 0
    partial_words = ""
    counter = 0
    if response.status_code==200:
        chat_counter += 1
        # print('chunk')
        for chunk in response.iter_lines():
            # Skipping first chunk
            if counter == 0:
                counter += 1
                continue
            # check whether each line is non-empty
            chunk = chunk.decode("utf-8")[6:]
            if chunk:
                # print(chunk)
                if chunk=='[DONE]':
                    break
                resp: dict = json.loads(chunk)
                choices = resp.get("choices")
                if not choices:
                    continue
                delta = choices[0].get("delta")
                if not delta:
                    continue
                # decode each line as response data is in bytes
                if len(chunk) > 12 and "content" in resp['choices'][0]['delta']:
                    # if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0:
                    #  break
                    partial_words = partial_words + resp['choices'][0]["delta"]["content"]
                    # print(partial_words)
                    if token_counter == 0:
                        history.append(" " + partial_words)
                    else:
                        history[-1] = partial_words
                    chat = [(history[i], history[i + 1]) for i in
                            range(0, len(history) - 1, 2)]  # convert to tuples of list
                    # print(chat)
                    token_counter += 1
                    yield chat, history, chat_counter  # resembles {chatbot: chat, state: history}
    else:
        chat = [(history[i], history[i + 1]) for i in
                range(0, len(history) - 1, 2)]  # convert to tuples of list
        chat.append((inputs, "OpenAI Network Error. please try again"))
        token_counter += 1
        yield chat, history, chat_counter  # resembles {chatbot: chat, state: history}
       



def reset_textbox():
    return gr.update(value='')

def clear_conversation(chatbot):
    return gr.update(value=None, visible=True), [], [], gr.update(value=0)


   
def galleryim():
    
    count=0
    for i in images1['filename']:
        count+=1
        if count==50:
             break
        photo_data = images1[images1["filename"] == i].iloc[0]
        response = requests.get(photo_data["link"] )
        try:
            img = PILIMAGE.open(BytesIO(response.content))
        except:
            print("File not found")
        else:
            images.append(img)
    return images

title = """<h1 align="center">ChatGPTDatasetSearch</h1>"""
description = """Language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form:
```
User: <utterance>
Assistant: <utterance>
User: <utterance>
Assistant: <utterance>
...
```
In this app, you can explore the outputs of a gpt-3.5-turbo LLM.
"""
with gr.Blocks(css="""#col_container {width: 800px; margin-left: auto; margin-right: auto;}
                #chatbot {height: 500px; overflow: auto;}
                #inputs {font-size: 20px;}
                #prompt_template_preview {padding: 1em; border-width: 1px; border-style: solid; border-color: #e0e0e0; border-radius: 4px;}""") as demo:
    gr.HTML(title)
    with gr.Column(variant="panel"):
        
        gr.HTML(  """<b><center><h1>1001Epochs</h1></center></b>
                    <p><center>TOP THREE images that best match the search query provided by the user</center></p>
                    """)
    
    with gr.Row():
        with gr.Column(scale=0.50):
            gallery = gr.Gallery( value=galleryim(),
            label="Generated images", show_label=False, elem_id="gallery",every=60).style(columns=5, container=True)
       
        with gr.Column(elem_id="col_container"):
            
            openai_api_key = gr.Textbox(type='password', label="Enter API Key",placeholder="sk-xxxxxxxx")
            button1=gr.Button("feed the csv into model")
            button1.click(run, show_progress=True)
            chatbot = gr.Chatbot(elem_id='chatbot')  # c
            inputs = gr.Textbox(show_label=False, placeholder="Enter Content",elem_id="inputs",value='')  # t
            state = gr.State([])  # s
            # state = gr.State(get_empty_state())
            b1 = gr.Button("Submit")
            btn_clear_conversation = gr.Button("🔃 New Conversation")
    
            # inputs, top_p, temperature, top_k, repetition_penalty
            with gr.Accordion("Advanced settings", open=False,):
                context_length = gr.Slider(minimum=1, maximum=6, value=2, step=1, label="Dialogue Length",
                                           info="Associate the previous rounds of dialogues, the higher the value, the more tokens will be consumed")
                temperature = gr.Slider(minimum=0, maximum=2.0, value=0.7, step=0.1, label="Temperature",
                                        info="The higher the value, the stronger the creativity")
                prompt_template = gr.Dropdown(label="Choose robot type",
                                              choices=list(prompt_templates.keys()),visible=False)
                prompt_template_preview = gr.Markdown(elem_id="prompt_template_preview",visible=False)
                # top_k = gr.Slider( minimum=1, maximum=50, value=4, step=1, interactive=True, label="Top-k",)
                # repetition_penalty = gr.Slider( minimum=0.1, maximum=3.0, value=1.03, step=0.01, interactive=True, label="Repetition Penalty", )
                chat_counter = gr.Number(value=0, visible=False, precision=0)

    inputs.submit(predict, [inputs, prompt_template, temperature, openai_api_key, chat_counter, context_length, chatbot, state],
                  [chatbot, state, chat_counter], )
    b1.click(predict, [inputs, prompt_template, temperature, openai_api_key, chat_counter, context_length, chatbot, state],
             [chatbot, state, chat_counter], )
    b1.click(reset_textbox, [], [inputs])

    btn_clear_conversation.click(clear_conversation, [], [inputs, chatbot, state, chat_counter])

    inputs.submit(reset_textbox, [], [inputs])
    prompt_template.change(on_prompt_template_change, inputs=[prompt_template], outputs=[prompt_template_preview])
    demo.load(get_prompt_templates, inputs=None, outputs=[prompt_template], queur=False)

    # gr.Markdown(description)
    demo.queue(concurrency_count=10)
    demo.launch(debug=True)