#Importing all the necessary needed libraries import torch import requests import numpy as np import pandas as pd import gradio as gr from io import BytesIO from PIL import Image as PILIMAGE from IPython.display import Image from IPython.core.display import HTML from transformers import CLIPProcessor, CLIPModel, CLIPTokenizer from sentence_transformers import SentenceTransformer, util import os import json import requests import langchain from tqdm import tqdm from langchain.text_splitter import CharacterTextSplitter images = [] prompt_templates = {"DefaultChatGPT": ""} # Streaming endpoint API_URL = "https://api.openai.com/v1/chat/completions" # os.getenv("API_URL") + "/generate_stream" convo_id = 'default' #5c72c157a8fd54357bd13112cd71952a import time images1= pd.read_csv("./images.csv") openai_api_key='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' m=0 style1= pd.read_csv('./stylesu.csv') feature_info= list(style1.columns) feature_info = ' '.join([str(elem) for elem in feature_info]) info= style1.values.tolist() final_info='' for i in info: li='' li=' '.join([str(elem) for elem in i]) final_info += li+'\n' def on_prompt_template_change(prompt_template): if not isinstance(prompt_template, str): return if prompt_template: return prompt_templates[prompt_template] else: '' def get_empty_state(): return {"total_tokens": 0, "messages": []} def get_prompt_templates(): with open('./prompts.json','r',encoding='utf8') as fp: json_data = json.load(fp) for data in json_data: act = data['act'] prompt = data['prompt'] prompt_templates[act] = prompt # reader = csv.reader(csv_file) # next(reader) # skip the header row # for row in reader: # if len(row) >= 2: # act = row[0].strip('"') # prompt = row[1].strip('"') # prompt_templates[act] = prompt choices = list(prompt_templates.keys()) choices = choices[:1] + sorted(choices[1:]) return gr.update(value=choices[0], choices=choices) def run(pr=gr.Progress(track_tqdm=True)): #if(chat_counter==0): message_prompt=[] x=len(final_info) print(x/2000) for i in range(0,x,2000): #final_texts: message_prompt.append(final_info[i:i+2000]+" Remember this along with previous prompts as it makes up the csv file") #//there prompt_template = "I want you to act as a Product recommender and read the CSV file I will provide you. I need you to thoroughly review the CSV file and give recommendations based on the input afterward. You should recommend me the product by displaying its id, and description. The csv features are:" +feature_info+ "The csv information is as follows:" payload = { "model": "gpt-3.5-turbo", "messages": [{"role":"system", "content":prompt_template}], "temperature": 0.1, "top_p": 1.0, "n": 1, "stream": True, "presence_penalty": 0, "frequency_penalty": 0, } headers = { "Content-Type": "application/json", "Authorization": f"Bearer {openai_api_key}" } response = requests.post(API_URL, headers=headers, json=payload, stream=True) for i in pr.tqdm(message_prompt): payload = { "model": "gpt-3.5-turbo", "messages": [{"role":"system", "content":i}], "temperature": 0.1, "top_p": 1.0, "n": 1, "stream": True, "presence_penalty": 0, "frequency_penalty": 0, } response = requests.post(API_URL, headers=headers, json=payload, stream=True) time.sleep(0.01) pr(1/2210) print("completed") def predict(inputs, prompt_template, temperature, openai_api_key, chat_counter, context_length, chatbot=[], history=[]): # # repetition_penalty, top_k if inputs==None: inputs = '' prompt_template = "I want you to act as a Product recommender and read the CSV file I will provide you. I need you to thoroughly review the CSV file and give recommendations based on the input afterward. You should recommend me the product by displaying its id, and description. The csv features are:" +feature_info+ "The csv information is as follows:" headers = { "Content-Type": "application/json", "Authorization": f"Bearer {openai_api_key}" } payload = { "model": "gpt-3.5-turbo", "messages": [{"role": "user", "content": f"{inputs}"}], "temperature": 0.1, "top_p": 1.0, "n": 1, "stream": True, "presence_penalty": 0, "frequency_penalty": 0, } # print(f"chat_counter - {chat_counter}") if chat_counter != 0: messages = [] # print(chatbot) # print(chatbot[-context_length:]) # print(context_length) for data in chatbot[-context_length:]: temp1 = {} temp1["role"] = "user" temp1["content"] = data[0] temp2 = {} temp2["role"] = "assistant" temp2["content"] = data[1] messages.append(temp1) messages.append(temp2) temp3 = {} temp3["role"] = "user" temp3["content"] = inputs messages.append(temp3) # print(messages) # messages payload = { "model": "gpt-3.5-turbo", "messages": [{"role": "system", "content": prompt_template}]+messages, # [{"role": "user", "content": f"{inputs}"}], "temperature": temperature, # 1.0, "n": 1, "stream": True, "presence_penalty": 0, "frequency_penalty": 0, } history.append(inputs) # print(f"payload is - {payload}") # make a POST request to the API endpoint using the requests.post method, passing in stream=True # print('payload',payload) response = requests.post(API_URL, headers=headers, json=payload, stream=True) # print('response', response) # print('content',response.content) # print('text', response.text) if response.status_code != 200: try: payload['id'] = response.content['id'] response = requests.post(API_URL, headers=headers, json=payload, stream=True) if response.status_code != 200: payload['id'] = response.content['id'] response = requests.post(API_URL, headers=headers, json=payload, stream=True) except: pass # print('status_code', response.status_code) # response = requests.post(API_URL, headers=headers, json=payload, stream=True) token_counter = 0 partial_words = "" counter = 0 if response.status_code==200: chat_counter += 1 # print('chunk') for chunk in response.iter_lines(): # Skipping first chunk if counter == 0: counter += 1 continue # check whether each line is non-empty chunk = chunk.decode("utf-8")[6:] if chunk: # print(chunk) if chunk=='[DONE]': break resp: dict = json.loads(chunk) choices = resp.get("choices") if not choices: continue delta = choices[0].get("delta") if not delta: continue # decode each line as response data is in bytes if len(chunk) > 12 and "content" in resp['choices'][0]['delta']: # if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0: # break partial_words = partial_words + resp['choices'][0]["delta"]["content"] # print(partial_words) if token_counter == 0: history.append(" " + partial_words) else: history[-1] = partial_words chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2)] # convert to tuples of list # print(chat) token_counter += 1 yield chat, history, chat_counter # resembles {chatbot: chat, state: history} else: chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2)] # convert to tuples of list chat.append((inputs, "OpenAI Network Error. please try again")) token_counter += 1 yield chat, history, chat_counter # resembles {chatbot: chat, state: history} def reset_textbox(): return gr.update(value='') def clear_conversation(chatbot): return gr.update(value=None, visible=True), [], [], gr.update(value=0) def galleryim(): count=0 for i in images1['filename']: count+=1 if count==50: break photo_data = images1[images1["filename"] == i].iloc[0] response = requests.get(photo_data["link"] ) try: img = PILIMAGE.open(BytesIO(response.content)) except: print("File not found") else: images.append(img) return images title = """