Spaces:
Runtime error
Runtime error
File size: 4,122 Bytes
d2a8669 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/classification_metric.R
\name{classification_metric}
\alias{classification_metric}
\title{Classification Metric}
\usage{
classification_metric(dataset, classified_dataset, unprivileged_groups, privileged_groups)
}
\arguments{
\item{dataset}{(BinaryLabelDataset) Dataset containing ground-truth labels}
\item{classified_dataset}{(BinaryLabelDataset) Dataset containing predictions}
\item{unprivileged_groups}{Unprivileged groups. List containing unprivileged protected attribute name and value of the unprivileged protected attribute.}
\item{privileged_groups}{Privileged groups. List containing privileged protected attribute name and value of the privileged protected attribute.}
}
\description{
Class for computing metrics based on two BinaryLabelDatasets. The first dataset is the original one and the second is the output of the classification transformer (or similar)
}
\examples{
\dontrun{
load_aif360_lib()
# Input dataset
data <- data.frame("feat" = c(0,0,1,1,1,1,0,1,1,0), "label" = c(1,0,0,1,0,0,1,0,1,1))
# Create aif compatible input dataset
act <- aif360::binary_label_dataset(data_path = data, favor_label=0, unfavor_label=1,
unprivileged_protected_attribute=0,
privileged_protected_attribute=1,
target_column="label", protected_attribute="feat")
# Classified dataset
pred_data <- data.frame("feat" = c(0,0,1,1,1,1,0,1,1,0), "label" = c(1,0,1,1,1,0,1,0,0,1))
# Create aif compatible classified dataset
pred <- aif360::binary_label_dataset(data_path = pred_data, favor_label=0, unfavor_label=1,
unprivileged_protected_attribute=0,
privileged_protected_attribute=1,
target_column="label", protected_attribute="feat")
# Create an instance of classification metric
cm <- classification_metric(act, pred, list('feat', 1), list('feat', 0))
# Access metric functions
cm$accuracy()
}
}
\seealso{
\href{https://aif360.readthedocs.io/en/latest/modules/metrics.html#classification-metric}{Explore available classification metrics explanations here}
Available metrics:
\itemize{
\item accuracy
\item average_abs_odds_difference
\item average_odds_difference
\item between_all_groups_coefficient_of_variation
\item between_all_groups_generalized_entropy_index
\item between_all_groups_theil_index
\item between_group_coefficient_of_variation
\item between_group_generalized_entropy_index
\item between_group_theil_index
\item binary_confusion_matrix
\item coefficient_of_variation
\item disparate_impact
\item equal_opportunity_difference
\item error_rate
\item error_rate_difference
\item error_rate_ratio
\item false_discovery_rate
\item false_discovery_rate_difference
\item false_discovery_rate_ratio
\item false_negative_rate
\item false_negative_rate_difference
\item false_negative_rate_ratio
\item false_omission_rate
\item false_omission_rate_difference
\item false_omission_rate_ratio
\item false_positive_rate
\item false_positive_rate_difference
\item false_positive_rate_ratio
\item generalized_binary_confusion_matrix
\item generalized_entropy_index
\item generalized_false_negative_rate
\item generalized_false_positive_rate
\item generalized_true_negative_rate
\item generalized_true_positive_rate
\item negative_predictive_value
\item num_false_negatives
\item num_false_positives
\item num_generalized_false_negatives
\item num_generalized_false_positives
\item num_generalized_true_negatives
\item num_generalized_true_positives
\item num_pred_negatives
\item num_pred_positives
\item num_true_negatives
\item num_true_positives
\item performance_measures
\item positive_predictive_value
\item power
\item precision
\item recall
\item selection_rate
\item sensitivity
\item specificity
\item statistical_parity_difference
\item theil_index
\item true_negative_rate
\item true_positive_rate
\item true_positive_rate_difference
}
}
|