File size: 2,422 Bytes
d2a8669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import numpy as np

from aif360.algorithms.inprocessing.celisMeta.General import General


class FalseDiscovery(General):
    def getExpectedGrad(self, dist, a, b, params, samples, mu, z_prior):
        t, probc_m1_0, probc_m1_1, prob_z_0, prob_z_1 = self.getValueForX(dist,
                a, b, params, z_prior, samples, return_probs=True)
        res = np.vstack([probc_m1_0 - a*prob_z_0,
                         probc_m1_1 - a*prob_z_1,
                        -probc_m1_0 + b*prob_z_0,
                        -probc_m1_1 + b*prob_z_1])
        res *= t / np.sqrt(t**2 + mu**2)
        return np.mean(res, axis=1)

    def getValueForX(self, dist, a, b, params, z_prior, x, return_probs=False):
        u_1, u_2, l_1, l_2 = params
        z_0, z_1 = 1-z_prior, z_prior

        pos = np.ones(len(x))
        prob_1_1 = self.prob(dist, np.c_[x, pos, pos])
        prob_m1_1 = self.prob(dist, np.c_[x, -pos, pos])
        prob_1_0 = self.prob(dist, np.c_[x, pos, np.zeros(len(x))])
        prob_m1_0 = self.prob(dist, np.c_[x, -pos, np.zeros(len(x))])

        total = prob_1_1 + prob_1_0 + prob_m1_0 + prob_m1_1
        # if total == 0:
        #     return 0

        prob_y_1 = (prob_1_1 + prob_1_0) / total
        prob_z_0 = (prob_m1_0 + prob_1_0) / total
        prob_z_1 = (prob_m1_1 + prob_1_1) / total

        probc_m1_0 = prob_m1_0 / total
        probc_m1_1 = prob_m1_1 / total

        c_0 = prob_y_1 - 0.5
        c_1 = u_1*(probc_m1_0 - a*prob_z_0) + u_2*(probc_m1_1 - a*prob_z_1)
        c_2 = l_1*(-probc_m1_0 + b*prob_z_0) + l_2*(-probc_m1_1 + b*prob_z_1)

        t = c_0 + c_1 + c_2
        if return_probs:
            return t, probc_m1_0, probc_m1_1, prob_z_0, prob_z_1
        return t

    def getFuncValue(self, dist, a, b, params, samples, z_prior):
        return np.mean(np.abs(self.getValueForX(dist, a, b, params, z_prior,
                                                samples)))

    @property
    def num_params(self):
        return 4

    def gamma(self, y_true, y_pred, sens):
        pos_0 = y_pred[sens == 0] == 1
        pos_1 = y_pred[sens == 1] == 1
        if np.sum(pos_0) == 0 or np.sum(pos_1) == 0:
            return 0
        fdr_0 = np.sum(pos_0 & (y_true[sens == 0] == -1)) / np.sum(pos_0)
        fdr_1 = np.sum(pos_1 & (y_true[sens == 1] == -1)) / np.sum(pos_1)
        if fdr_0 == 0 or fdr_1 == 0:
            return 0
        return min(fdr_0/fdr_1, fdr_1/fdr_0)