Spaces:
Runtime error
Runtime error
File size: 11,192 Bytes
d2a8669 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
# Copyright 2019 Seth V. Neel, Michael J. Kearns, Aaron L. Roth, Zhiwei Steven Wu
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may not
# use this file except in compliance with the License. You may obtain a copy of
# the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software distributed
# under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
# CONDITIONS OF ANY KIND, either express or implied. See the License for the
# specific language governing permissions and limitations under the License.
"""Class Auditor and Class Group implementing auditing for rich subgroup fairness in [KRNW18].
This module contains functionality to Audit an arbitrary classifier with respect to rich subgroup fairness,
where rich subgroup fairness is defined by hyperplanes over the sensitive attributes.
Basic Usage:
auditor = Auditor(data_set, 'FP')
# returns mean(predictions | y = 0) if 'FP' 1-mean(predictions | y = 1) if FN
metric_baseline = auditor.get_baseline(y, predictions)
group = auditor.get_group(dataset_yhat.labels, metric_baseline)
"""
import numpy as np
import pandas as pd
from sklearn import linear_model
from aif360.algorithms.inprocessing.gerryfair.reg_oracle_class import RegOracle
from aif360.algorithms.inprocessing.gerryfair import clean
class Group(object):
"""Group class: created by Auditor when identifying violation."""
def __init__(self, func, group_size, weighted_disparity, disparity,
disparity_direction, group_rate):
"""Constructor for Group Class.
:param func: the linear function that defines the group
:param group_size: the proportion of the dataset in the group
:param weighted_disparity: group_size*FP or FN disparity
:param disparity: FN or FP disparity (absolute value)
:param disparity_direction: indicator whether fp in group > fp_baseline, returns {1, -1}
:param group_rate: FN or FN rate in the group
"""
super(Group, self).__init__()
self.func = func
self.group_size = group_size
self.weighted_disparity = weighted_disparity
self.disparity = disparity
self.disparity_direction = disparity_direction
self.group_rate = group_rate
def return_f(self):
return [
self.func, self.group_size, self.weighted_disparity,
self.disparity, self.disparity_direction, self.group_rate
]
class Auditor:
"""This is the Auditor class. It is used in the training algorithm to repeatedly find subgroups that break the
fairness disparity constraint. You can also use it independently as a stand alone auditor."""
def __init__(self, dataset, fairness_def):
"""Auditor constructor.
Args:
:param dataset: dataset object subclassing StandardDataset.
:param fairness_def: 'FP' or 'FN'
"""
X, X_prime, y = clean.extract_df_from_ds(dataset)
self.X_prime = X_prime
self.y_input = y
self.y_inverse = np.array(
[abs(1 - y_value) for y_value in self.y_input])
self.fairness_def = fairness_def
if self.fairness_def not in ['FP', 'FN']:
raise Exception(
'Invalid fairness metric specified: {}. Please choose \'FP\' or \'FN\'.'
.format(self.fairness_def))
self.y = self.y_input
# flip the labels for FN rate auditing
if self.fairness_def == 'FN':
self.y = self.y_inverse
self.X_prime_0 = pd.DataFrame(
[self.X_prime.iloc[u, :] for u, s in enumerate(self.y) if s == 0])
def initialize_costs(self, n):
"""Initialize the costs for CSC problem that corresponds to auditing. See paper for details.
Args:
:param self: object of class Auditor
:param n: size of the dataset
Return:
:return The costs for labeling a point 0, for labeling a point 1, as tuples.
"""
costs_0 = None
costs_1 = None
if self.fairness_def == 'FP':
costs_0 = [0.0] * n
costs_1 = [-1.0 / n * (2 * i - 1) for i in self.y_input]
elif self.fairness_def == 'FN':
costs_1 = [0.0] * n
costs_0 = [1.0 / n * (2 * i - 1) for i in self.y_input]
return tuple(costs_0), tuple(costs_1), self.X_prime_0
def get_baseline(self, y, predictions):
"""Return the baseline FP or FN rate of the classifier predictions.
Args:
:param y: true labels (binary)
:param predictions: predictions of classifier (soft predictions)
Returns:
:return: The baseline FP or FN rate of the classifier predictions
"""
if self.fairness_def == 'FP':
return np.mean([predictions[i] for i, c in enumerate(y) if c == 0])
elif self.fairness_def == 'FN':
return np.mean([(1 - predictions[i]) for i, c in enumerate(y)
if c == 1])
def update_costs(self, c_0, c_1, group, C, iteration, gamma):
"""Recursively update the costs from incorrectly predicting 1 for the learner.
Args:
:param c_0: current costs for predicting 0
:param c_1: current costs for predicting 1
:param group: last group found by the auditor, object of class Group.
:param C: see Model class for details.
:param iteration: current iteration
:param gamma: target disparity
Returns:
:return c_0, c_1: tuples of new costs for CSC problem of learner
"""
# make costs mutable type
c_0 = list(c_0)
c_1 = list(c_1)
pos_neg = group.disparity_direction
n = len(self.y)
g_members = group.func.predict(self.X_prime_0)
m = self.X_prime_0.shape[0]
g_weight = np.sum(g_members) * (1.0 / float(m))
for i in range(n):
X_prime_0_index = 0
if self.y[i] == 0:
new_group_cost = (1.0 / n) * pos_neg * C * (
1.0 / iteration) * (g_weight - g_members[X_prime_0_index])
if np.abs(group.weighted_disparity) < gamma:
new_group_cost = 0
if self.fairness_def == 'FP':
c_1[i] = (c_1[i] - 1.0 / n) * (
(iteration - 1.0) /
iteration) + new_group_cost + 1.0 / n
elif self.fairness_def == 'FN':
c_0[i] = (c_0[i] - 1.0 / n) * (
(iteration - 1.0) /
iteration) + new_group_cost + 1.0 / n
X_prime_0_index += 1
else:
if self.fairness_def == 'FP':
c_1[i] = -1.0 / n
elif self.fairness_def == 'FN':
c_0[i] = -1.0 / n
return tuple(c_0), tuple(c_1)
def get_subset(self, predictions):
"""Returns subset of dataset with y = 0 for FP and labels, or subset with y = 0 with flipped labels
if the fairness_def is FN.
Args:
:param predictions: soft predictions of the classifier
Returns:
:return: X_prime_0: subset of features with y = 0
:return: labels: the labels on y = 0 if FP else 1-labels.
"""
if self.fairness_def == 'FP':
return self.X_prime_0, [
a for u, a in enumerate(predictions) if self.y[u] == 0
]
# handles FN rate by flipping labels
elif self.fairness_def == 'FN':
return self.X_prime_0, [(1 - a) for u, a in enumerate(predictions)
if self.y[u] == 0]
def get_group(self, predictions, metric_baseline):
"""Given decisions on sensitive attributes, labels, and FP rate audit wrt
to gamma unfairness. Return the group found, the gamma unfairness, fp disparity, and sign(fp disparity).
Args:
:param predictions: soft predictions of the classifier
:param metric_baseline: see function get_baseline
Returns:
:return func: object of type RegOracle defining the group
:return g_size_0: the size of the group divided by n
:return fp_disp: |group_rate-baseline|
:return fp_disp_w: fp_disp*group_size_0
:return sgn(fp_disp): sgn(group_rate-baseline)
:return fp_group_rate_neg:
"""
X_subset, predictions_subset = self.get_subset(predictions)
m = len(predictions_subset)
n = float(len(self.y))
cost_0 = [0.0] * m
cost_1 = -1.0 / n * (metric_baseline - predictions_subset)
reg0 = linear_model.LinearRegression()
reg0.fit(X_subset, cost_0)
reg1 = linear_model.LinearRegression()
reg1.fit(X_subset, cost_1)
func = RegOracle(reg0, reg1)
group_members_0 = func.predict(X_subset)
# get the false positive rate in group
if sum(group_members_0) == 0:
fp_group_rate = 0
else:
fp_group_rate = np.mean([
r for t, r in enumerate(predictions_subset)
if group_members_0[t] == 1
])
g_size_0 = np.sum(group_members_0) * 1.0 / n
fp_disp = np.abs(fp_group_rate - metric_baseline)
fp_disp_w = fp_disp * g_size_0
cost_0_neg = [0.0] * m
cost_1_neg = -1.0 / n * (predictions_subset - metric_baseline)
reg0_neg = linear_model.LinearRegression()
reg0_neg.fit(X_subset, cost_0_neg)
reg1_neg = linear_model.LinearRegression()
reg1_neg.fit(X_subset, cost_1_neg)
func_neg = RegOracle(reg0_neg, reg1_neg)
group_members_0_neg = func_neg.predict(X_subset)
if sum(group_members_0_neg) == 0:
fp_group_rate_neg = 0
else:
fp_group_rate_neg = np.mean([
r for t, r in enumerate(predictions_subset)
if group_members_0[t] == 0
])
g_size_0_neg = np.sum(group_members_0_neg) * 1.0 / n
fp_disp_neg = np.abs(fp_group_rate_neg - metric_baseline)
fp_disp_w_neg = fp_disp_neg * g_size_0_neg
# return group
if (fp_disp_w_neg > fp_disp_w):
return Group(func_neg, g_size_0_neg, fp_disp_w_neg, fp_disp_neg,
-1, fp_group_rate)
else:
return Group(func, g_size_0, fp_disp_w, fp_disp, 1,
fp_group_rate_neg)
def audit(self, predictions):
"""Takes in predictions on dataset (X',y) and returns:
a membership vector which represents the group that violates the fairness metric,
along with the gamma disparity.
"""
if isinstance(predictions, pd.DataFrame):
predictions = predictions.values
metric_baseline = self.get_baseline(self.y_input, predictions)
group = self.get_group(predictions, metric_baseline)
return group.func.predict(self.X_prime), group.weighted_disparity
|