Spaces:
Runtime error
Runtime error
File size: 5,709 Bytes
d2a8669 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
# Copyright 2019 Seth V. Neel, Michael J. Kearns, Aaron L. Roth, Zhiwei Steven Wu
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may not
# use this file except in compliance with the License. You may obtain a copy of
# the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software distributed
# under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
# CONDITIONS OF ANY KIND, either express or implied. See the License for the
# specific language governing permissions and limitations under the License.
"""Functions for manipulating and loading input data."""
import argparse
import numpy as np
import pandas as pd
def setup():
parser = argparse.ArgumentParser(description='Fairness Data Cleaning')
parser.add_argument(
'-n',
'--name',
type=str,
help='name of the to store the new datasets (Required)')
parser.add_argument('-d',
'--dataset',
type=str,
help='name of the original dataset file (Required)')
parser.add_argument(
'-a',
'--attributes',
type=str,
help=
'name of the file representing which attributes are protected (unprotected = 0, protected = 1, label = 2) (Required)'
)
parser.add_argument(
'-c',
'--centered',
default=False,
action='store_true',
required=False,
help='Include this flag to determine whether data should be centered')
args = parser.parse_args()
return [args.name, args.dataset, args.attributes, args.centered]
def clean_dataset(dataset, attributes, centered):
"""Clean a dataset, given the filename for the dataset and the filename for the attributes.
Args:
:param dataset: Filename for dataset. The dataset should be formatted such that categorical
variables use one-hot encoding
and the label should be 0/1
:param attributes: Filename for the attributes of the dataset. The file should have each column name in a list,
and under this list should have 0 for an unprotected attribute, 1 for a protected attribute, and 2 for the
attribute of the label.
:param centered: boolean flag that determines whether to center the input covariates.
:return X, X_prime, y: pandas dataframes of attributes, sensitive attributes, labels
"""
df = pd.read_csv(dataset)
sens_df = pd.read_csv(attributes)
## Get and remove label Y
y_col = [str(c) for c in sens_df.columns if sens_df[c][0] == 2]
print('label feature: {}'.format(y_col))
if (len(y_col) > 1):
raise ValueError('More than 1 label column used')
if (len(y_col) < 1):
raise ValueError('No label column used')
y = df[y_col[0]]
## Do not use labels in rest of data
X = df.loc[:, df.columns != y_col[0]]
X = X.loc[:, X.columns != 'Unnamed: 0']
## Create X_prime, by getting protected attributes
sens_cols = [str(c) for c in sens_df.columns if sens_df[c][0] == 1]
print('sensitive features: {}'.format(sens_cols))
sens_dict = {c: 1 if c in sens_cols else 0 for c in df.columns}
X, sens_dict = one_hot_code(X, sens_dict)
sens_names = [key for key in sens_dict.keys() if sens_dict[key] == 1]
print(
'there are {} sensitive features including derivative features'.format(
len(sens_names)))
X_prime = X[sens_names]
if centered:
X = center(X)
X_prime = center(X_prime)
return X, X_prime, y
def center(X):
for col in X.columns:
X.loc[:, col] = X.loc[:, col] - np.mean(X.loc[:, col])
return X
def array_to_tuple(x):
# have to cast ndarray to hashable type in get_baseline()
x = tuple([el[0] for el in x]) if x.__class__.__name__ == 'ndarray' else x
return x
def one_hot_code(df1, sens_dict):
cols = df1.columns
for c in cols:
if isinstance(df1[c][0], str):
column = df1[c]
df1 = df1.drop(c, 1)
unique_values = list(set(column))
n = len(unique_values)
if n > 2:
for i in range(n):
col_name = '{}.{}'.format(c, i)
col_i = [
1 if el == unique_values[i] else 0 for el in column
]
df1[col_name] = col_i
sens_dict[col_name] = sens_dict[c]
del sens_dict[c]
else:
col_name = c
col = [1 if el == unique_values[0] else 0 for el in column]
df1[col_name] = col
return df1, sens_dict
def extract_df_from_ds(dataset):
"""Extract data frames from Transformer Data set
Args:
:param dataset: aif360 dataset
Returns:
:return X, X_prime, y: pandas dataframes of attributes, sensitive attributes, labels
"""
X = pd.DataFrame(dataset.convert_to_dataframe()[0])
# remove labels
X = X.drop(columns=dataset.label_names)
# get sensitive attributes
X_prime = X[dataset.protected_attribute_names]
y = tuple(dataset.labels[:, 0])
return X, X_prime, y
def get_data(dataset):
# Helper for main method
"""Given name of dataset, load in the three datasets associated from the clean.py file
:param dataset:
:return:
"""
X = pd.read_csv('dataset/' + dataset + '_features.csv')
X_prime = pd.read_csv('dataset/' + dataset + '_protectedfeatures.csv')
y = pd.read_csv('dataset/' + dataset + '_labels.csv',
names=['index', 'label'])
y = y['label']
return X, X_prime, y
|