File size: 5,709 Bytes
d2a8669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# Copyright 2019 Seth V. Neel, Michael J. Kearns, Aaron L. Roth, Zhiwei Steven Wu
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may not
# use this file except in compliance with the License. You may obtain a copy of
# the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software distributed
# under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
# CONDITIONS OF ANY KIND, either express or implied. See the License for the
# specific language governing permissions and limitations under the License.
"""Functions for manipulating and loading input data."""
import argparse
import numpy as np
import pandas as pd


def setup():
    parser = argparse.ArgumentParser(description='Fairness Data Cleaning')
    parser.add_argument(
        '-n',
        '--name',
        type=str,
        help='name of the to store the new datasets (Required)')
    parser.add_argument('-d',
                        '--dataset',
                        type=str,
                        help='name of the original dataset file (Required)')
    parser.add_argument(
        '-a',
        '--attributes',
        type=str,
        help=
        'name of the file representing which attributes are protected (unprotected = 0, protected = 1, label = 2) (Required)'
    )
    parser.add_argument(
        '-c',
        '--centered',
        default=False,
        action='store_true',
        required=False,
        help='Include this flag to determine whether data should be centered')
    args = parser.parse_args()
    return [args.name, args.dataset, args.attributes, args.centered]


def clean_dataset(dataset, attributes, centered):
    """Clean a dataset, given the filename for the dataset and the filename for the attributes.

    Args:
        :param dataset: Filename for dataset. The dataset should be formatted such that categorical
        variables use one-hot encoding
    and the label should be 0/1
        :param attributes: Filename for the attributes of the dataset. The file should have each column name in a list,
         and under this list should have 0 for an unprotected attribute, 1 for a protected attribute, and 2 for the
          attribute of the label.
        :param centered: boolean flag that determines whether to center the input covariates.
        :return X, X_prime, y: pandas dataframes of attributes, sensitive attributes, labels
    """

    df = pd.read_csv(dataset)
    sens_df = pd.read_csv(attributes)

    ## Get and remove label Y
    y_col = [str(c) for c in sens_df.columns if sens_df[c][0] == 2]
    print('label feature: {}'.format(y_col))
    if (len(y_col) > 1):
        raise ValueError('More than 1 label column used')
    if (len(y_col) < 1):
        raise ValueError('No label column used')

    y = df[y_col[0]]

    ## Do not use labels in rest of data
    X = df.loc[:, df.columns != y_col[0]]
    X = X.loc[:, X.columns != 'Unnamed: 0']
    ## Create X_prime, by getting protected attributes
    sens_cols = [str(c) for c in sens_df.columns if sens_df[c][0] == 1]
    print('sensitive features: {}'.format(sens_cols))
    sens_dict = {c: 1 if c in sens_cols else 0 for c in df.columns}
    X, sens_dict = one_hot_code(X, sens_dict)
    sens_names = [key for key in sens_dict.keys() if sens_dict[key] == 1]
    print(
        'there are {} sensitive features including derivative features'.format(
            len(sens_names)))
    X_prime = X[sens_names]
    if centered:
        X = center(X)
        X_prime = center(X_prime)
    return X, X_prime, y


def center(X):
    for col in X.columns:
        X.loc[:, col] = X.loc[:, col] - np.mean(X.loc[:, col])
    return X


def array_to_tuple(x):
    # have to cast ndarray to hashable type in get_baseline()
    x = tuple([el[0] for el in x]) if x.__class__.__name__ == 'ndarray' else x
    return x


def one_hot_code(df1, sens_dict):
    cols = df1.columns
    for c in cols:
        if isinstance(df1[c][0], str):
            column = df1[c]
            df1 = df1.drop(c, 1)
            unique_values = list(set(column))
            n = len(unique_values)
            if n > 2:
                for i in range(n):
                    col_name = '{}.{}'.format(c, i)
                    col_i = [
                        1 if el == unique_values[i] else 0 for el in column
                    ]
                    df1[col_name] = col_i
                    sens_dict[col_name] = sens_dict[c]
                del sens_dict[c]
            else:
                col_name = c
                col = [1 if el == unique_values[0] else 0 for el in column]
                df1[col_name] = col
    return df1, sens_dict


def extract_df_from_ds(dataset):
    """Extract data frames from Transformer Data set

    Args:
         :param dataset: aif360 dataset

    Returns:
         :return X, X_prime, y: pandas dataframes of attributes, sensitive attributes, labels
    """

    X = pd.DataFrame(dataset.convert_to_dataframe()[0])
    # remove labels
    X = X.drop(columns=dataset.label_names)
    # get sensitive attributes
    X_prime = X[dataset.protected_attribute_names]
    y = tuple(dataset.labels[:, 0])
    return X, X_prime, y


def get_data(dataset):
    # Helper for main method
    """Given name of dataset, load in the three datasets associated from the clean.py file
    :param dataset:
    :return:
    """
    X = pd.read_csv('dataset/' + dataset + '_features.csv')
    X_prime = pd.read_csv('dataset/' + dataset + '_protectedfeatures.csv')
    y = pd.read_csv('dataset/' + dataset + '_labels.csv',
                    names=['index', 'label'])
    y = y['label']
    return X, X_prime, y