Spaces:
Runtime error
Runtime error
File size: 9,905 Bytes
d2a8669 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
# Original work Copyright (c) 2017 Geoff Pleiss
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
# Modified work Copyright 2018 IBM Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may not
# use this file except in compliance with the License. You may obtain a copy of
# the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software distributed
# under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
# CONDITIONS OF ANY KIND, either express or implied. See the License for the
# specific language governing permissions and limitations under the License.
import numpy as np
from aif360.algorithms import Transformer
from aif360.metrics import ClassificationMetric, utils
class CalibratedEqOddsPostprocessing(Transformer):
"""Calibrated equalized odds postprocessing is a post-processing technique
that optimizes over calibrated classifier score outputs to find
probabilities with which to change output labels with an equalized odds
objective [7]_.
References:
.. [7] G. Pleiss, M. Raghavan, F. Wu, J. Kleinberg, and
K. Q. Weinberger, "On Fairness and Calibration," Conference on Neural
Information Processing Systems, 2017
Adapted from:
https://github.com/gpleiss/equalized_odds_and_calibration/blob/master/calib_eq_odds.py
"""
def __init__(self, unprivileged_groups, privileged_groups,
cost_constraint='weighted', seed=None):
"""
Args:
unprivileged_groups (dict or list(dict)): Representation for
unprivileged group.
privileged_groups (dict or list(dict)): Representation for
privileged group.
cost_contraint: fpr, fnr or weighted
seed (int, optional): Seed to make `predict` repeatable.
"""
super(CalibratedEqOddsPostprocessing, self).__init__(
unprivileged_groups=unprivileged_groups,
privileged_groups=privileged_groups,
seed=seed)
self.seed = seed
self.model_params = None
self.unprivileged_groups = [unprivileged_groups] \
if isinstance(unprivileged_groups, dict) else unprivileged_groups
self.privileged_groups = [privileged_groups] \
if isinstance(privileged_groups, dict) else privileged_groups
self.cost_constraint = cost_constraint
if self.cost_constraint == 'fnr':
self.fn_rate = 1
self.fp_rate = 0
elif self.cost_constraint == 'fpr':
self.fn_rate = 0
self.fp_rate = 1
elif self.cost_constraint == 'weighted':
self.fn_rate = 1
self.fp_rate = 1
self.base_rate_priv = 0.0
self.base_rate_unpriv = 0.0
def fit(self, dataset_true, dataset_pred):
"""Compute parameters for equalizing generalized odds using true and
predicted scores, while preserving calibration.
Args:
dataset_true (BinaryLabelDataset): Dataset containing true `labels`.
dataset_pred (BinaryLabelDataset): Dataset containing predicted
`scores`.
Returns:
CalibratedEqOddsPostprocessing: Returns self.
"""
# Create boolean conditioning vectors for protected groups
cond_vec_priv = utils.compute_boolean_conditioning_vector(
dataset_pred.protected_attributes,
dataset_pred.protected_attribute_names,
self.privileged_groups)
cond_vec_unpriv = utils.compute_boolean_conditioning_vector(
dataset_pred.protected_attributes,
dataset_pred.protected_attribute_names,
self.unprivileged_groups)
cm = ClassificationMetric(dataset_true, dataset_pred,
unprivileged_groups=self.unprivileged_groups,
privileged_groups=self.privileged_groups)
self.base_rate_priv = cm.base_rate(privileged=True)
self.base_rate_unpriv = cm.base_rate(privileged=False)
# Create a dataset with "trivial" predictions
dataset_trivial = dataset_pred.copy(deepcopy=True)
dataset_trivial.scores[cond_vec_priv] = cm.base_rate(privileged=True)
dataset_trivial.scores[cond_vec_unpriv] = cm.base_rate(privileged=False)
cm_triv = ClassificationMetric(dataset_true, dataset_trivial,
unprivileged_groups=self.unprivileged_groups,
privileged_groups=self.privileged_groups)
if self.fn_rate == 0:
priv_cost = cm.generalized_false_positive_rate(privileged=True)
unpriv_cost = cm.generalized_false_positive_rate(privileged=False)
priv_trivial_cost = cm_triv.generalized_false_positive_rate(privileged=True)
unpriv_trivial_cost = cm_triv.generalized_false_positive_rate(privileged=False)
elif self.fp_rate == 0:
priv_cost = cm.generalized_false_negative_rate(privileged=True)
unpriv_cost = cm.generalized_false_negative_rate(privileged=False)
priv_trivial_cost = cm_triv.generalized_false_negative_rate(privileged=True)
unpriv_trivial_cost = cm_triv.generalized_false_negative_rate(privileged=False)
else:
priv_cost = weighted_cost(self.fp_rate, self.fn_rate, cm, privileged=True)
unpriv_cost = weighted_cost(self.fp_rate, self.fn_rate, cm, privileged=False)
priv_trivial_cost = weighted_cost(self.fp_rate, self.fn_rate, cm_triv, privileged=True)
unpriv_trivial_cost = weighted_cost(self.fp_rate, self.fn_rate, cm_triv, privileged=False)
unpriv_costs_more = unpriv_cost > priv_cost
self.priv_mix_rate = (unpriv_cost - priv_cost) / (priv_trivial_cost - priv_cost) if unpriv_costs_more else 0
self.unpriv_mix_rate = 0 if unpriv_costs_more else (priv_cost - unpriv_cost) / (unpriv_trivial_cost - unpriv_cost)
return self
def predict(self, dataset, threshold=0.5):
"""Perturb the predicted scores to obtain new labels that satisfy
equalized odds constraints, while preserving calibration.
Args:
dataset (BinaryLabelDataset): Dataset containing `scores` that needs
to be transformed.
threshold (float): Threshold for converting `scores` to `labels`.
Values greater than or equal to this threshold are predicted to
be the `favorable_label`. Default is 0.5.
Returns:
dataset (BinaryLabelDataset): transformed dataset.
"""
if self.seed is not None:
np.random.seed(self.seed)
cond_vec_priv = utils.compute_boolean_conditioning_vector(
dataset.protected_attributes,
dataset.protected_attribute_names,
self.privileged_groups)
cond_vec_unpriv = utils.compute_boolean_conditioning_vector(
dataset.protected_attributes,
dataset.protected_attribute_names,
self.unprivileged_groups)
unpriv_indices = (np.random.random(sum(cond_vec_unpriv))
<= self.unpriv_mix_rate)
unpriv_new_pred = dataset.scores[cond_vec_unpriv].copy()
unpriv_new_pred[unpriv_indices] = self.base_rate_unpriv
priv_indices = (np.random.random(sum(cond_vec_priv))
<= self.priv_mix_rate)
priv_new_pred = dataset.scores[cond_vec_priv].copy()
priv_new_pred[priv_indices] = self.base_rate_priv
dataset_new = dataset.copy(deepcopy=True)
dataset_new.scores = np.zeros_like(dataset.scores, dtype=np.float64)
dataset_new.scores[cond_vec_priv] = priv_new_pred
dataset_new.scores[cond_vec_unpriv] = unpriv_new_pred
# Create labels from scores using a default threshold
dataset_new.labels = np.where(dataset_new.scores >= threshold,
dataset_new.favorable_label,
dataset_new.unfavorable_label)
return dataset_new
def fit_predict(self, dataset_true, dataset_pred, threshold=0.5):
"""fit and predict methods sequentially."""
return self.fit(dataset_true, dataset_pred).predict(
dataset_pred, threshold=threshold)
######### SUPPORTING FUNCTIONS ##########
def weighted_cost(fp_rate, fn_rate, cm, privileged):
norm_const = float(fp_rate + fn_rate) if\
(fp_rate != 0 and fn_rate != 0) else 1
return ((fp_rate / norm_const
* cm.generalized_false_positive_rate(privileged=privileged)
* (1 - cm.base_rate(privileged=privileged))) +
(fn_rate / norm_const
* cm.generalized_false_negative_rate(privileged=privileged)
* cm.base_rate(privileged=privileged)))
|