File size: 9,905 Bytes
d2a8669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# Original work Copyright (c) 2017 Geoff Pleiss
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
# Modified work Copyright 2018 IBM Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may not
# use this file except in compliance with the License. You may obtain a copy of
# the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software distributed
# under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
# CONDITIONS OF ANY KIND, either express or implied. See the License for the
# specific language governing permissions and limitations under the License.
import numpy as np

from aif360.algorithms import Transformer
from aif360.metrics import ClassificationMetric, utils


class CalibratedEqOddsPostprocessing(Transformer):
    """Calibrated equalized odds postprocessing is a post-processing technique
    that optimizes over calibrated classifier score outputs to find
    probabilities with which to change output labels with an equalized odds
    objective [7]_.

    References:
        .. [7] G. Pleiss, M. Raghavan, F. Wu, J. Kleinberg, and
           K. Q. Weinberger, "On Fairness and Calibration," Conference on Neural
           Information Processing Systems, 2017

    Adapted from:
    https://github.com/gpleiss/equalized_odds_and_calibration/blob/master/calib_eq_odds.py
    """

    def __init__(self, unprivileged_groups, privileged_groups,
                 cost_constraint='weighted', seed=None):
        """
        Args:
            unprivileged_groups (dict or list(dict)): Representation for
                unprivileged group.
            privileged_groups (dict or list(dict)): Representation for
                privileged group.
            cost_contraint: fpr, fnr or weighted
            seed (int, optional): Seed to make `predict` repeatable.
        """
        super(CalibratedEqOddsPostprocessing, self).__init__(
            unprivileged_groups=unprivileged_groups,
            privileged_groups=privileged_groups,
            seed=seed)

        self.seed = seed
        self.model_params = None
        self.unprivileged_groups = [unprivileged_groups] \
            if isinstance(unprivileged_groups, dict) else unprivileged_groups
        self.privileged_groups = [privileged_groups] \
            if isinstance(privileged_groups, dict) else privileged_groups
        self.cost_constraint = cost_constraint
        if self.cost_constraint == 'fnr':
            self.fn_rate = 1
            self.fp_rate = 0
        elif self.cost_constraint == 'fpr':
            self.fn_rate = 0
            self.fp_rate = 1
        elif self.cost_constraint == 'weighted':
            self.fn_rate = 1
            self.fp_rate = 1

        self.base_rate_priv = 0.0
        self.base_rate_unpriv = 0.0

    def fit(self, dataset_true, dataset_pred):
        """Compute parameters for equalizing generalized odds using true and
        predicted scores, while preserving calibration.

        Args:
            dataset_true (BinaryLabelDataset): Dataset containing true `labels`.
            dataset_pred (BinaryLabelDataset): Dataset containing predicted
                `scores`.

        Returns:
            CalibratedEqOddsPostprocessing: Returns self.
        """

        # Create boolean conditioning vectors for protected groups
        cond_vec_priv = utils.compute_boolean_conditioning_vector(
            dataset_pred.protected_attributes,
            dataset_pred.protected_attribute_names,
            self.privileged_groups)
        cond_vec_unpriv = utils.compute_boolean_conditioning_vector(
            dataset_pred.protected_attributes,
            dataset_pred.protected_attribute_names,
            self.unprivileged_groups)

        cm = ClassificationMetric(dataset_true, dataset_pred,
                                  unprivileged_groups=self.unprivileged_groups,
                                  privileged_groups=self.privileged_groups)
        self.base_rate_priv = cm.base_rate(privileged=True)
        self.base_rate_unpriv = cm.base_rate(privileged=False)

        # Create a dataset with "trivial" predictions
        dataset_trivial = dataset_pred.copy(deepcopy=True)
        dataset_trivial.scores[cond_vec_priv] = cm.base_rate(privileged=True)
        dataset_trivial.scores[cond_vec_unpriv] = cm.base_rate(privileged=False)
        cm_triv = ClassificationMetric(dataset_true, dataset_trivial,
            unprivileged_groups=self.unprivileged_groups,
            privileged_groups=self.privileged_groups)

        if self.fn_rate == 0:
            priv_cost = cm.generalized_false_positive_rate(privileged=True)
            unpriv_cost = cm.generalized_false_positive_rate(privileged=False)
            priv_trivial_cost = cm_triv.generalized_false_positive_rate(privileged=True)
            unpriv_trivial_cost = cm_triv.generalized_false_positive_rate(privileged=False)

        elif self.fp_rate == 0:
            priv_cost = cm.generalized_false_negative_rate(privileged=True)
            unpriv_cost = cm.generalized_false_negative_rate(privileged=False)
            priv_trivial_cost = cm_triv.generalized_false_negative_rate(privileged=True)
            unpriv_trivial_cost = cm_triv.generalized_false_negative_rate(privileged=False)

        else:
            priv_cost = weighted_cost(self.fp_rate, self.fn_rate, cm, privileged=True)
            unpriv_cost = weighted_cost(self.fp_rate, self.fn_rate, cm, privileged=False)
            priv_trivial_cost = weighted_cost(self.fp_rate, self.fn_rate, cm_triv, privileged=True)
            unpriv_trivial_cost = weighted_cost(self.fp_rate, self.fn_rate, cm_triv, privileged=False)

        unpriv_costs_more = unpriv_cost > priv_cost
        self.priv_mix_rate = (unpriv_cost - priv_cost) / (priv_trivial_cost - priv_cost) if unpriv_costs_more else 0
        self.unpriv_mix_rate = 0 if unpriv_costs_more else (priv_cost - unpriv_cost) / (unpriv_trivial_cost - unpriv_cost)

        return self

    def predict(self, dataset, threshold=0.5):
        """Perturb the predicted scores to obtain new labels that satisfy
        equalized odds constraints, while preserving calibration.

        Args:
            dataset (BinaryLabelDataset): Dataset containing `scores` that needs
                to be transformed.
            threshold (float): Threshold for converting `scores` to `labels`.
                Values greater than or equal to this threshold are predicted to
                be the `favorable_label`. Default is 0.5.
        Returns:
            dataset (BinaryLabelDataset): transformed dataset.
        """
        if self.seed is not None:
            np.random.seed(self.seed)

        cond_vec_priv = utils.compute_boolean_conditioning_vector(
            dataset.protected_attributes,
            dataset.protected_attribute_names,
            self.privileged_groups)
        cond_vec_unpriv = utils.compute_boolean_conditioning_vector(
            dataset.protected_attributes,
            dataset.protected_attribute_names,
            self.unprivileged_groups)

        unpriv_indices = (np.random.random(sum(cond_vec_unpriv))
                       <= self.unpriv_mix_rate)
        unpriv_new_pred = dataset.scores[cond_vec_unpriv].copy()
        unpriv_new_pred[unpriv_indices] = self.base_rate_unpriv

        priv_indices = (np.random.random(sum(cond_vec_priv))
                     <= self.priv_mix_rate)
        priv_new_pred = dataset.scores[cond_vec_priv].copy()
        priv_new_pred[priv_indices] = self.base_rate_priv

        dataset_new = dataset.copy(deepcopy=True)

        dataset_new.scores = np.zeros_like(dataset.scores, dtype=np.float64)
        dataset_new.scores[cond_vec_priv] = priv_new_pred
        dataset_new.scores[cond_vec_unpriv] = unpriv_new_pred

        # Create labels from scores using a default threshold
        dataset_new.labels = np.where(dataset_new.scores >= threshold,
                                      dataset_new.favorable_label,
                                      dataset_new.unfavorable_label)
        return dataset_new

    def fit_predict(self, dataset_true, dataset_pred, threshold=0.5):
        """fit and predict methods sequentially."""
        return self.fit(dataset_true, dataset_pred).predict(
            dataset_pred, threshold=threshold)

######### SUPPORTING FUNCTIONS ##########

def weighted_cost(fp_rate, fn_rate, cm, privileged):
    norm_const = float(fp_rate + fn_rate) if\
                      (fp_rate != 0 and fn_rate != 0) else 1
    return ((fp_rate / norm_const
            * cm.generalized_false_positive_rate(privileged=privileged)
            * (1 - cm.base_rate(privileged=privileged))) +
           (fn_rate / norm_const
            * cm.generalized_false_negative_rate(privileged=privileged)
            * cm.base_rate(privileged=privileged)))