Spaces:
Runtime error
Runtime error
File size: 11,846 Bytes
d2a8669 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
# Original work Copyright (c) 2017 Geoff Pleiss
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
# Modified work Copyright 2018 IBM Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may not
# use this file except in compliance with the License. You may obtain a copy of
# the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software distributed
# under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
# CONDITIONS OF ANY KIND, either express or implied. See the License for the
# specific language governing permissions and limitations under the License.
import numpy as np
from scipy.optimize import linprog
from aif360.algorithms import Transformer
from aif360.metrics import ClassificationMetric, utils
class EqOddsPostprocessing(Transformer):
"""Equalized odds postprocessing is a post-processing technique that solves
a linear program to find probabilities with which to change output labels to
optimize equalized odds [8]_ [9]_.
References:
.. [8] M. Hardt, E. Price, and N. Srebro, "Equality of Opportunity in
Supervised Learning," Conference on Neural Information Processing
Systems, 2016.
.. [9] G. Pleiss, M. Raghavan, F. Wu, J. Kleinberg, and
K. Q. Weinberger, "On Fairness and Calibration," Conference on Neural
Information Processing Systems, 2017.
"""
def __init__(self, unprivileged_groups, privileged_groups, seed=None):
"""
Args:
unprivileged_groups (list(dict)): Representation for unprivileged
group.
privileged_groups (list(dict)): Representation for privileged
group.
seed (int, optional): Seed to make `predict` repeatable.
"""
super(EqOddsPostprocessing, self).__init__(
unprivileged_groups=unprivileged_groups,
privileged_groups=privileged_groups,
seed=seed)
self.seed = seed
self.model_params = None
self.unprivileged_groups = unprivileged_groups
self.privileged_groups = privileged_groups
def fit(self, dataset_true, dataset_pred):
"""Compute parameters for equalizing odds using true and predicted
labels.
Args:
true_dataset (BinaryLabelDataset): Dataset containing true labels.
pred_dataset (BinaryLabelDataset): Dataset containing predicted
labels.
Returns:
EqOddsPostprocessing: Returns self.
"""
metric = ClassificationMetric(dataset_true, dataset_pred,
unprivileged_groups=self.unprivileged_groups,
privileged_groups=self.privileged_groups)
# compute basic statistics
sbr = metric.base_rate(privileged=True)
obr = metric.base_rate(privileged=False)
fpr0 = metric.false_positive_rate(privileged=True)
fpr1 = metric.false_positive_rate(privileged=False)
fnr0 = metric.false_negative_rate(privileged=True)
fnr1 = metric.false_negative_rate(privileged=False)
tpr0 = metric.true_positive_rate(privileged=True)
tpr1 = metric.true_positive_rate(privileged=False)
tnr0 = metric.true_negative_rate(privileged=True)
tnr1 = metric.true_negative_rate(privileged=False)
# linear program has 4 decision variables:
# [Pr[label_tilde = 1 | label_hat = 1, protected_attributes = 0];
# Pr[label_tilde = 1 | label_hat = 0, protected_attributes = 0];
# Pr[label_tilde = 1 | label_hat = 1, protected_attributes = 1];
# Pr[label_tilde = 1 | label_hat = 0, protected_attributes = 1]]
# Coefficients of the linear objective function to be minimized.
c = np.array([fpr0 - tpr0, tnr0 - fnr0, fpr1 - tpr1, tnr1 - fnr1])
# A_ub - 2-D array which, when matrix-multiplied by x, gives the values
# of the upper-bound inequality constraints at x
# b_ub - 1-D array of values representing the upper-bound of each
# inequality constraint (row) in A_ub.
# Just to keep these between zero and one
A_ub = np.array([[ 1, 0, 0, 0],
[-1, 0, 0, 0],
[ 0, 1, 0, 0],
[ 0, -1, 0, 0],
[ 0, 0, 1, 0],
[ 0, 0, -1, 0],
[ 0, 0, 0, 1],
[ 0, 0, 0, -1]], dtype=np.float64)
b_ub = np.array([1, 0, 1, 0, 1, 0, 1, 0], dtype=np.float64)
# Create boolean conditioning vectors for protected groups
cond_vec_priv = utils.compute_boolean_conditioning_vector(
dataset_pred.protected_attributes,
dataset_pred.protected_attribute_names,
self.privileged_groups)
cond_vec_unpriv = utils.compute_boolean_conditioning_vector(
dataset_pred.protected_attributes,
dataset_pred.protected_attribute_names,
self.unprivileged_groups)
sconst = np.ravel(
dataset_pred.labels[cond_vec_priv] == dataset_pred.favorable_label)
sflip = np.ravel(
dataset_pred.labels[cond_vec_priv] == dataset_pred.unfavorable_label)
oconst = np.ravel(
dataset_pred.labels[cond_vec_unpriv] == dataset_pred.favorable_label)
oflip = np.ravel(
dataset_pred.labels[cond_vec_unpriv] == dataset_pred.unfavorable_label)
y_true = dataset_true.labels.ravel()
sm_tn = np.logical_and(sflip,
y_true[cond_vec_priv] == dataset_true.unfavorable_label,
dtype=np.float64)
sm_fn = np.logical_and(sflip,
y_true[cond_vec_priv] == dataset_true.favorable_label,
dtype=np.float64)
sm_fp = np.logical_and(sconst,
y_true[cond_vec_priv] == dataset_true.unfavorable_label,
dtype=np.float64)
sm_tp = np.logical_and(sconst,
y_true[cond_vec_priv] == dataset_true.favorable_label,
dtype=np.float64)
om_tn = np.logical_and(oflip,
y_true[cond_vec_unpriv] == dataset_true.unfavorable_label,
dtype=np.float64)
om_fn = np.logical_and(oflip,
y_true[cond_vec_unpriv] == dataset_true.favorable_label,
dtype=np.float64)
om_fp = np.logical_and(oconst,
y_true[cond_vec_unpriv] == dataset_true.unfavorable_label,
dtype=np.float64)
om_tp = np.logical_and(oconst,
y_true[cond_vec_unpriv] == dataset_true.favorable_label,
dtype=np.float64)
# A_eq - 2-D array which, when matrix-multiplied by x,
# gives the values of the equality constraints at x
# b_eq - 1-D array of values representing the RHS of each equality
# constraint (row) in A_eq.
# Used to impose equality of odds constraint
A_eq = [[(np.mean(sconst*sm_tp) - np.mean(sflip*sm_tp)) / sbr,
(np.mean(sflip*sm_fn) - np.mean(sconst*sm_fn)) / sbr,
(np.mean(oflip*om_tp) - np.mean(oconst*om_tp)) / obr,
(np.mean(oconst*om_fn) - np.mean(oflip*om_fn)) / obr],
[(np.mean(sconst*sm_fp) - np.mean(sflip*sm_fp)) / (1-sbr),
(np.mean(sflip*sm_tn) - np.mean(sconst*sm_tn)) / (1-sbr),
(np.mean(oflip*om_fp) - np.mean(oconst*om_fp)) / (1-obr),
(np.mean(oconst*om_tn) - np.mean(oflip*om_tn)) / (1-obr)]]
b_eq = [(np.mean(oflip*om_tp) + np.mean(oconst*om_fn)) / obr
- (np.mean(sflip*sm_tp) + np.mean(sconst*sm_fn)) / sbr,
(np.mean(oflip*om_fp) + np.mean(oconst*om_tn)) / (1-obr)
- (np.mean(sflip*sm_fp) + np.mean(sconst*sm_tn)) / (1-sbr)]
# Linear program
self.model_params = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq=b_eq)
return self
def predict(self, dataset):
"""Perturb the predicted labels to obtain new labels that satisfy
equalized odds constraints.
Args:
dataset (BinaryLabelDataset): Dataset containing labels that needs
to be transformed.
dataset (BinaryLabelDataset): Transformed dataset.
"""
if self.seed is not None:
np.random.seed(self.seed)
# Get the model parameters output from fit
sp2p, sn2p, op2p, on2p = self.model_params.x
# Create boolean conditioning vectors for protected groups
cond_vec_priv = utils.compute_boolean_conditioning_vector(
dataset.protected_attributes, dataset.protected_attribute_names,
self.privileged_groups)
cond_vec_unpriv = utils.compute_boolean_conditioning_vector(
dataset.protected_attributes, dataset.protected_attribute_names,
self.unprivileged_groups)
# Randomly flip labels according to the probabilities in model_params
self_fair_pred = dataset.labels[cond_vec_priv].copy()
self_pp_indices, _ = np.nonzero(
dataset.labels[cond_vec_priv] == dataset.favorable_label)
self_pn_indices, _ = np.nonzero(
dataset.labels[cond_vec_priv] == dataset.unfavorable_label)
np.random.shuffle(self_pp_indices)
np.random.shuffle(self_pn_indices)
n2p_indices = self_pn_indices[:int(len(self_pn_indices) * sn2p)]
self_fair_pred[n2p_indices] = dataset.favorable_label
p2n_indices = self_pp_indices[:int(len(self_pp_indices) * (1 - sp2p))]
self_fair_pred[p2n_indices] = dataset.unfavorable_label
othr_fair_pred = dataset.labels[cond_vec_unpriv].copy()
othr_pp_indices, _ = np.nonzero(
dataset.labels[cond_vec_unpriv] == dataset.favorable_label)
othr_pn_indices, _ = np.nonzero(
dataset.labels[cond_vec_unpriv] == dataset.unfavorable_label)
np.random.shuffle(othr_pp_indices)
np.random.shuffle(othr_pn_indices)
n2p_indices = othr_pn_indices[:int(len(othr_pn_indices) * on2p)]
othr_fair_pred[n2p_indices] = dataset.favorable_label
p2n_indices = othr_pp_indices[:int(len(othr_pp_indices) * (1 - op2p))]
othr_fair_pred[p2n_indices] = dataset.unfavorable_label
# Mutated, fairer dataset with new labels
dataset_new = dataset.copy()
new_labels = np.zeros_like(dataset.labels, dtype=np.float64)
new_labels[cond_vec_priv] = self_fair_pred
new_labels[cond_vec_unpriv] = othr_fair_pred
dataset_new.labels = new_labels
return dataset_new
def fit_predict(self, dataset_true, dataset_pred):
"""fit and predict methods sequentially."""
return self.fit(dataset_true, dataset_pred).predict(dataset_pred)
|