File size: 11,846 Bytes
d2a8669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# Original work Copyright (c) 2017 Geoff Pleiss
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
# Modified work Copyright 2018 IBM Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may not
# use this file except in compliance with the License. You may obtain a copy of
# the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software distributed
# under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
# CONDITIONS OF ANY KIND, either express or implied. See the License for the
# specific language governing permissions and limitations under the License.
import numpy as np
from scipy.optimize import linprog

from aif360.algorithms import Transformer
from aif360.metrics import ClassificationMetric, utils


class EqOddsPostprocessing(Transformer):
    """Equalized odds postprocessing is a post-processing technique that solves
    a linear program to find probabilities with which to change output labels to
    optimize equalized odds [8]_ [9]_.

    References:
        .. [8] M. Hardt, E. Price, and N. Srebro, "Equality of Opportunity in
           Supervised Learning," Conference on Neural Information Processing
           Systems, 2016.
        .. [9] G. Pleiss, M. Raghavan, F. Wu, J. Kleinberg, and
           K. Q. Weinberger, "On Fairness and Calibration," Conference on Neural
           Information Processing Systems, 2017.
    """

    def __init__(self, unprivileged_groups, privileged_groups, seed=None):
        """
        Args:
            unprivileged_groups (list(dict)): Representation for unprivileged
                group.
            privileged_groups (list(dict)): Representation for privileged
                group.
            seed (int, optional): Seed to make `predict` repeatable.
        """
        super(EqOddsPostprocessing, self).__init__(
            unprivileged_groups=unprivileged_groups,
            privileged_groups=privileged_groups,
            seed=seed)

        self.seed = seed
        self.model_params = None
        self.unprivileged_groups = unprivileged_groups
        self.privileged_groups = privileged_groups

    def fit(self, dataset_true, dataset_pred):
        """Compute parameters for equalizing odds using true and predicted
        labels.

        Args:
            true_dataset (BinaryLabelDataset): Dataset containing true labels.
            pred_dataset (BinaryLabelDataset): Dataset containing predicted
                labels.

        Returns:
            EqOddsPostprocessing: Returns self.
        """
        metric = ClassificationMetric(dataset_true, dataset_pred,
            unprivileged_groups=self.unprivileged_groups,
            privileged_groups=self.privileged_groups)

        # compute basic statistics
        sbr = metric.base_rate(privileged=True)
        obr = metric.base_rate(privileged=False)

        fpr0 = metric.false_positive_rate(privileged=True)
        fpr1 = metric.false_positive_rate(privileged=False)
        fnr0 = metric.false_negative_rate(privileged=True)
        fnr1 = metric.false_negative_rate(privileged=False)
        tpr0 = metric.true_positive_rate(privileged=True)
        tpr1 = metric.true_positive_rate(privileged=False)
        tnr0 = metric.true_negative_rate(privileged=True)
        tnr1 = metric.true_negative_rate(privileged=False)

        # linear program has 4 decision variables:
        # [Pr[label_tilde = 1 | label_hat = 1, protected_attributes = 0];
        #  Pr[label_tilde = 1 | label_hat = 0, protected_attributes = 0];
        #  Pr[label_tilde = 1 | label_hat = 1, protected_attributes = 1];
        #  Pr[label_tilde = 1 | label_hat = 0, protected_attributes = 1]]
        # Coefficients of the linear objective function to be minimized.
        c = np.array([fpr0 - tpr0, tnr0 - fnr0, fpr1 - tpr1, tnr1 - fnr1])

        # A_ub - 2-D array which, when matrix-multiplied by x, gives the values
        # of the upper-bound inequality constraints at x
        # b_ub - 1-D array of values representing the upper-bound of each
        # inequality constraint (row) in A_ub.
        # Just to keep these between zero and one
        A_ub = np.array([[ 1,  0,  0,  0],
                         [-1,  0,  0,  0],
                         [ 0,  1,  0,  0],
                         [ 0, -1,  0,  0],
                         [ 0,  0,  1,  0],
                         [ 0,  0, -1,  0],
                         [ 0,  0,  0,  1],
                         [ 0,  0,  0, -1]], dtype=np.float64)
        b_ub = np.array([1, 0, 1, 0, 1, 0, 1, 0], dtype=np.float64)

        # Create boolean conditioning vectors for protected groups
        cond_vec_priv = utils.compute_boolean_conditioning_vector(
            dataset_pred.protected_attributes,
            dataset_pred.protected_attribute_names,
            self.privileged_groups)
        cond_vec_unpriv = utils.compute_boolean_conditioning_vector(
            dataset_pred.protected_attributes,
            dataset_pred.protected_attribute_names,
            self.unprivileged_groups)

        sconst = np.ravel(
            dataset_pred.labels[cond_vec_priv] == dataset_pred.favorable_label)
        sflip = np.ravel(
            dataset_pred.labels[cond_vec_priv] == dataset_pred.unfavorable_label)
        oconst = np.ravel(
            dataset_pred.labels[cond_vec_unpriv] == dataset_pred.favorable_label)
        oflip = np.ravel(
            dataset_pred.labels[cond_vec_unpriv] == dataset_pred.unfavorable_label)

        y_true = dataset_true.labels.ravel()

        sm_tn = np.logical_and(sflip,
            y_true[cond_vec_priv] == dataset_true.unfavorable_label,
            dtype=np.float64)
        sm_fn = np.logical_and(sflip,
            y_true[cond_vec_priv] == dataset_true.favorable_label,
            dtype=np.float64)
        sm_fp = np.logical_and(sconst,
            y_true[cond_vec_priv] == dataset_true.unfavorable_label,
            dtype=np.float64)
        sm_tp = np.logical_and(sconst,
            y_true[cond_vec_priv] == dataset_true.favorable_label,
            dtype=np.float64)

        om_tn = np.logical_and(oflip,
            y_true[cond_vec_unpriv] == dataset_true.unfavorable_label,
            dtype=np.float64)
        om_fn = np.logical_and(oflip,
            y_true[cond_vec_unpriv] == dataset_true.favorable_label,
            dtype=np.float64)
        om_fp = np.logical_and(oconst,
            y_true[cond_vec_unpriv] == dataset_true.unfavorable_label,
            dtype=np.float64)
        om_tp = np.logical_and(oconst,
            y_true[cond_vec_unpriv] == dataset_true.favorable_label,
            dtype=np.float64)

        # A_eq - 2-D array which, when matrix-multiplied by x,
        # gives the values of the equality constraints at x
        # b_eq - 1-D array of values representing the RHS of each equality
        # constraint (row) in A_eq.
        # Used to impose equality of odds constraint
        A_eq = [[(np.mean(sconst*sm_tp) - np.mean(sflip*sm_tp)) / sbr,
                 (np.mean(sflip*sm_fn) - np.mean(sconst*sm_fn)) / sbr,
                 (np.mean(oflip*om_tp) - np.mean(oconst*om_tp)) / obr,
                 (np.mean(oconst*om_fn) - np.mean(oflip*om_fn)) / obr],
                [(np.mean(sconst*sm_fp) - np.mean(sflip*sm_fp)) / (1-sbr),
                 (np.mean(sflip*sm_tn) - np.mean(sconst*sm_tn)) / (1-sbr),
                 (np.mean(oflip*om_fp) - np.mean(oconst*om_fp)) / (1-obr),
                 (np.mean(oconst*om_tn) - np.mean(oflip*om_tn)) / (1-obr)]]

        b_eq = [(np.mean(oflip*om_tp) + np.mean(oconst*om_fn)) / obr
              - (np.mean(sflip*sm_tp) + np.mean(sconst*sm_fn)) / sbr,
                (np.mean(oflip*om_fp) + np.mean(oconst*om_tn)) / (1-obr)
              - (np.mean(sflip*sm_fp) + np.mean(sconst*sm_tn)) / (1-sbr)]

        # Linear program
        self.model_params = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq=b_eq)

        return self

    def predict(self, dataset):
        """Perturb the predicted labels to obtain new labels that satisfy
        equalized odds constraints.

        Args:
            dataset (BinaryLabelDataset): Dataset containing labels that needs
                to be transformed.
            dataset (BinaryLabelDataset): Transformed dataset.
        """
        if self.seed is not None:
            np.random.seed(self.seed)

        # Get the model parameters output from fit
        sp2p, sn2p, op2p, on2p = self.model_params.x

        # Create boolean conditioning vectors for protected groups
        cond_vec_priv = utils.compute_boolean_conditioning_vector(
            dataset.protected_attributes, dataset.protected_attribute_names,
            self.privileged_groups)
        cond_vec_unpriv = utils.compute_boolean_conditioning_vector(
            dataset.protected_attributes, dataset.protected_attribute_names,
            self.unprivileged_groups)

        # Randomly flip labels according to the probabilities in model_params
        self_fair_pred = dataset.labels[cond_vec_priv].copy()
        self_pp_indices, _ = np.nonzero(
            dataset.labels[cond_vec_priv] == dataset.favorable_label)
        self_pn_indices, _ = np.nonzero(
            dataset.labels[cond_vec_priv] == dataset.unfavorable_label)
        np.random.shuffle(self_pp_indices)
        np.random.shuffle(self_pn_indices)

        n2p_indices = self_pn_indices[:int(len(self_pn_indices) * sn2p)]
        self_fair_pred[n2p_indices] = dataset.favorable_label
        p2n_indices = self_pp_indices[:int(len(self_pp_indices) * (1 - sp2p))]
        self_fair_pred[p2n_indices] = dataset.unfavorable_label

        othr_fair_pred = dataset.labels[cond_vec_unpriv].copy()
        othr_pp_indices, _ = np.nonzero(
            dataset.labels[cond_vec_unpriv] == dataset.favorable_label)
        othr_pn_indices, _ = np.nonzero(
            dataset.labels[cond_vec_unpriv] == dataset.unfavorable_label)
        np.random.shuffle(othr_pp_indices)
        np.random.shuffle(othr_pn_indices)

        n2p_indices = othr_pn_indices[:int(len(othr_pn_indices) * on2p)]
        othr_fair_pred[n2p_indices] = dataset.favorable_label
        p2n_indices = othr_pp_indices[:int(len(othr_pp_indices) * (1 - op2p))]
        othr_fair_pred[p2n_indices] = dataset.unfavorable_label

        # Mutated, fairer dataset with new labels
        dataset_new = dataset.copy()

        new_labels = np.zeros_like(dataset.labels, dtype=np.float64)
        new_labels[cond_vec_priv] = self_fair_pred
        new_labels[cond_vec_unpriv] = othr_fair_pred

        dataset_new.labels = new_labels

        return dataset_new

    def fit_predict(self, dataset_true, dataset_pred):
        """fit and predict methods sequentially."""
        return self.fit(dataset_true, dataset_pred).predict(dataset_pred)