File size: 6,872 Bytes
d2a8669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import sklearn.preprocessing
import numpy as np

from aif360.algorithms import Transformer


class LimeEncoder(Transformer):
    """Tranformer for converting aif360 dataset to LIME dataset and vice versa.

    (LIME - Local Interpretable Model-Agnostic Explanations) [2]_

    See for details/usage:
    https://github.com/marcotcr/lime

    References:
        .. [2] M.T. Ribeiro, S. Singh, and C. Guestrin, '"Why should I trust
           you?" Explaining the predictions of any classifier.'
           https://arxiv.org/pdf/1602.04938v1.pdf
    """

    def __init__(self):
        super(LimeEncoder, self).__init__()

    def fit(self, dataset):
        """Take an aif360 dataset and save all relevant metadata as well as
        mappings needed to transform/inverse_transform the data between aif360
        and lime.

        Args:
            dataset (BinaryLabelDataset): aif360 dataset

        Returns:
            LimeEncoder: Returns self.
        """
        self.s_feature_names_with_one_hot_encoding = dataset.feature_names
        df, df_dict = dataset.convert_to_dataframe(de_dummy_code=True)

        dfc = df.drop(dataset.label_names[0], axis=1)  # remove label (class) column

        self.s_feature_names = list(dfc.columns)       # create list of feature names
        self.s_data = dfc.values                       # create array of feature values

        # since categorical features are 1-hot-encoded and their names changed,
        # the set diff gives us the list of categorical features as non-
        # categorical feature names are not changed
        self.s_categorical_features = list(set(self.s_feature_names)
                                         - set(self.s_feature_names_with_one_hot_encoding))

        self.s_protected_attribute_names = dataset.protected_attribute_names

        # add protected attribute names to the list of categorical features
        self.s_categorical_features = self.s_categorical_features \
                                    + self.s_protected_attribute_names

        self.s_labels = df[dataset.label_names[0]]  # create labels

        # following 3 lines are not really needed
        # using to create s_class_names..can do so manually as well ...array([ 0.,  1.])
        s_le = sklearn.preprocessing.LabelEncoder()
        s_le.fit(self.s_labels)
        # self.s_labels = s_le.transform(self.s_labels)
        self.s_class_names = s_le.classes_

        # convert s_categorical_features to a list of array indexes in
        # s_feature_names corresponding to categorical features
        # (NOTE - does not included protected attributes)
        self.s_categorical_features = [self.s_feature_names.index(x)
                                       for x in self.s_categorical_features]

        # map all the categorical features to numerical values and store the
        # mappings in s_categorical_names
        self.s_categorical_names = {}
        for feature in self.s_categorical_features:
            self.le = sklearn.preprocessing.LabelEncoder()
            self.le.fit(self.s_data[:, feature])
            #self.s_data[:, feature] = le.transform(self.s_data[:, feature])
            self.s_categorical_names[feature] = self.le.classes_

        return self

    def transform(self, aif360data):
        """Take aif360 data array and return data array that is lime encoded
        (numeric array in which categorical features are NOT one-hot-encoded).

        Args:
            aif360data (np.ndarray): Dataset features

        Returns:
            np.ndarray: LIME dataset features
        """
        tgtNumRows = aif360data.shape[0]
        tgtNumcolumns = len(self.s_feature_names)
        limedata = np.zeros(shape=(tgtNumRows, tgtNumcolumns))

        # non_categorical_features = list(set(self.s_feature_names) & set(self.s_feature_names_with_one_hot_encoding))
        for rw in range(limedata.shape[0]):
            for ind, feature in enumerate(self.s_feature_names):
                if ind in self.s_categorical_features:
                    # tranform the value since categorical feature except if it
                    # is also a protected attribute
                    if feature in self.s_protected_attribute_names:
                        # just copy the value as is
                        limedata[rw, ind] = aif360data[rw, self.s_feature_names_with_one_hot_encoding.index(feature)]
                    else:
                        possible_feature_values = self.s_categorical_names[ind]
                        for indc in range(len(possible_feature_values)):
                            cval = possible_feature_values[indc]
                            colName = feature + "=" + cval
                            if (aif360data[rw][self.s_feature_names_with_one_hot_encoding.index(colName)] == 1.0):
                                limedata[rw][ind] = indc
                else:
                    # just copy the value as is
                    limedata[rw, ind] = aif360data[rw, self.s_feature_names_with_one_hot_encoding.index(feature)]

        return limedata

    def inverse_transform(self, limedata):
        """Take data array that is lime encoded (that is, lime-compatible data
        created by this class from a given aif360 dataset) and return data array
        consistent with the original aif360 dataset.

        Args:
            limedata (np.ndarray): Dataset features

        Returns:
            np.ndarray: aif360 dataset features
        """
        tgtNumRows = limedata.shape[0]
        tgtNumcolumns = len(self.s_feature_names_with_one_hot_encoding)
        aif360data = np.zeros(shape=(tgtNumRows, tgtNumcolumns))

        for rw in range(aif360data.shape[0]):
            for ind, feature in enumerate(self.s_feature_names):
                # s_categorical_features has list of indexes into
                # s_feature_names for categorical features
                if ind in self.s_categorical_features:
                    if feature in self.s_protected_attribute_names:
                        # just copy the value as is
                        aif360data[rw, self.s_feature_names_with_one_hot_encoding.index(feature)] = limedata[rw, ind]
                    else:
                        # s_categorical_names[ind] has mapping of categorical to
                        # numerical values i.e. limedata[rw, ind] is index of
                        # this array. value is string val
                        new_feature = feature + '=' + self.s_categorical_names[ind][int(limedata[rw, ind])]
                        # categorical feature:
                        aif360data[rw, self.s_feature_names_with_one_hot_encoding.index(new_feature)] = 1.0
                else: # just copy value
                    aif360data[rw, self.s_feature_names_with_one_hot_encoding.index(feature)] = limedata[rw, ind]

        return aif360data